



# Capítulo 7 - Tecnologias Ethernet





## **Tipos de Ethernet**





|                                                   | Subcamada Logical Link Control<br>802.3 Media Access Control |                      |                                       |                                         |                             |                                |                             |                              |                                  |
|---------------------------------------------------|--------------------------------------------------------------|----------------------|---------------------------------------|-----------------------------------------|-----------------------------|--------------------------------|-----------------------------|------------------------------|----------------------------------|
| Camada<br>Física de<br>Sinalização<br>Meio Físico | -Style 10BASE5<br>50 Ohm                                     | NC 10BASE2<br>50 Ohm | UTP RJ-45 10BASE-TX<br>(100m) 100 Ohm | 100BASE-TX (100m) 100-<br>Ohm UTP RJ-45 | SC 100BASE-FX<br>3 412m) MM | RJ-45 1000BASE-T<br>n) 100 Ohm | SC 1000BASE-SX<br>a 550) MM | SC 1000BASE-LX<br>a 5000) MM | ra SC 10GBASE-<br>rios) MM ou SM |

• Quatro características comuns em todos os tipos de Ethernet: parâmetros de temporização, o formato de quadros, o processo de transmissão é as regras básicas de projeto.



## Parâmetros Ethernet de 10Mbps



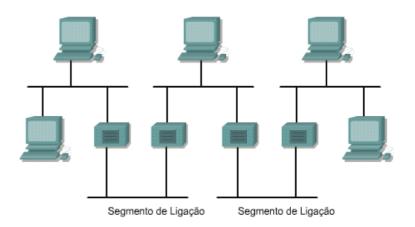


• **Ethernet 10-Mbps** e versões mais lentas de Ethernet são assíncronas.

| Parâmetro                                      | Valor                         |
|------------------------------------------------|-------------------------------|
| Bit Time (tempo de bit)                        | 100 nanoseconds (ns)          |
| Slot Time                                      | 512 tempos de bit, 64 octetos |
| Interframe Spacing (espaçamento entre quadros) | 96 bits *                     |
| Collision Attempt Limit                        | 16                            |
| Collision Backoff Limit                        | 10                            |
| Collision Jam Size                             | 32 bits                       |
| Maximum Untagged Frame Size                    | 1518 octetos                  |
| Minimum Frame Size                             | 512 bits (64 octetos)         |

\* O valor listado é o espaçamento entre quadros (interfame spacing) oficial. Após um quadro ser transmitido, todas as estações em uma Ethernet 10-Mbps são forçadas a esperar um tempo mínimo de 96 tempos de bit, ou 9.6 microsegundos, antes que possam transmitir o próximo quadro.






#### 10BASE5





- **10BASE5** foi o primeiro meio físico usado pela Ethernet padrão 802.3.
- 10BASE5 só funciona em half-duplex.
- Usa codificação Manchester.
- Com cabo coaxial grosso, cada segmento pode ter no máximo 500m.
- Transmissão de 10
   Mbps.
- Usa topologia física de barramento.



 Três segmentos com estações conectadas e dois segmentos usados apenas como segmentos de ligação.





#### 10BASE2





- A terminação de cada extremidade do coaxial deverá ser de 50 Ohms.
- A distância mínima entre enchimentos é 0,5 metros.
- Cada estação deve se conectar a uma distância máxima de quatro centímetros do coaxial fino.
- Tamanho máximo do segmento é 185 metros.
- Os segmentos de ligação entre os repetidores deverão ter um total de apenas duas conexões, os próprios repetidores.
- 10BASE2 foi introduzido em 1985.
- 10BASE2 também usa half-duplex.
- Usa codificação Manchester.
- Instalação mais fácil porque o cabo é menor, mais leve e mais flexível, além de ser fino.
- Pode ter um comprimento de até 185 metros.
- A taxa máxima de transmissão de 10BASE2 é de 10 Mbps.
- Utiliza topologia física de barramento.

  Associação dos histrutores NetAcademy agosto de 2007 Página





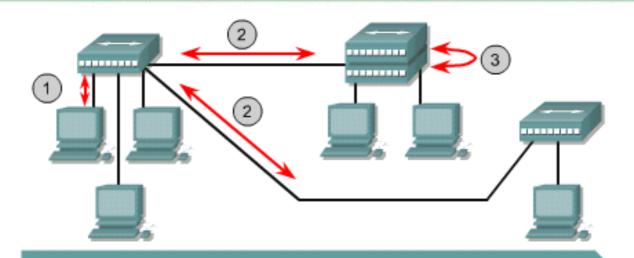
#### 10BASE-T





| Número do Pino | Sinal                                                         |
|----------------|---------------------------------------------------------------|
| 1              | TD+ (Transmitir Dados, sinal diferencial no sentido positivo) |
| 2              | TD- (Transmitir Dados, sinal diferencial no sentido negativo) |
| 3              | RD+ (Receber Dados, sinal diferencial no sentido positivo)    |
| 4              | Unused                                                        |
| 5              | Não usado                                                     |
| 6              | RD- (Receber Dados, sinal diferencial no sentido negativo)    |
| 7              | Não usado                                                     |
| 8              | Não usado                                                     |

- 10BASE-T foi introduzido em 1990.
- A utilização de half-duplex ou full-duplex é uma escolha de configuração. 10BASE-T transporta 10 Mbps de tráfego no modo half-duplex e 20 Mbps no modo full-duplex.
- Também usa codificação Manchester.
- Usa cabos de cobre de par trançado não blindado (UTP) e pode ter no máximo 90m, no cabeamento horizontal. O conector usado é o conector RJ-45 de oito pinos.
- Utiliza topologia em estrela com um HUB central.






## Cabeamento e Arquitetura do 10BASE-T







- O comprimento do cabo em segmentos UTP é normalmente de 1 a 100 metros entre a estação de trabalho e o hub, e entre os hubs.
- Cada hub é um repetidor multiportas, então os hubs entre links contam na direção do limite do repetidor.
- Estes dois hubs "empilháveis" com backplanes interconectados contam como apenas um hub [repetidor].
- Os links 10BASE-T geralmente consistem numa conexão entre a estação e um hub ou switch.



## **Ethernet 100-Mbps**





| Parâmetro                                      | Valor                         |
|------------------------------------------------|-------------------------------|
| Bit Time (tempo de bit)                        | 10 nanoseconds (ns)           |
| Slot Time                                      | 512 tempos de bit, 64 octetos |
| Interframe Spacing (espaçamento entre quadros) | 96 bits                       |
| Collision Attempt Limit                        | 16                            |
| Collision Backoff Limit                        | 10                            |
| Collision Jam Size                             | 32 bits                       |
| Maximum Untagged Frame Size                    | 1518 octetos                  |
| Minimum Frame Size                             | 512 bits (64 octetos)         |

- Principais tecnologias de Ethernet 100-Mbps ou Fast Ethernet são:
  - 100BASE-TX, meio físico de cabo de cobre UTP
  - 100BASE-FX, meio físico de fibra ótica multimodo.
- Fast Ethernet representa um aumento de dez vezes sobre a velocidade de 10BASE-T.





## **100BASE-TX Pinagem**





 Na pinagem para uma conexão 100BASE-TX, existem dois caminhos separados de transmissão/recepção, idênticos à configuração 10BASE-T.

| Número do Pino | Sinal                                         |
|----------------|-----------------------------------------------|
| 1              | TD+ (Transmissão, sinal diferencial positivo) |
| 2              | TD- (Transmissão, sinal diferencial negativo) |
| 3              | RD+ (Recepção, sinal diferencial positivo)    |
| 4              | Não usado                                     |
| 5              | Não usado                                     |
| 6              | RD- (Recepção, sinal diferencial negativo)    |
| 7              | Não usado                                     |
| 8              | Não usado                                     |

 100BASE-TX opera a 100 Mbps em half-duplex e 200 Mbps em full-duplex.



## 100BASE-FX Pinagem





| Fibra | Sinal                                            |
|-------|--------------------------------------------------|
| 1     | Tx (LED e transmissores laser)                   |
| 2     | Rx (detectores de fotodiodos de alta velocidade) |

- São mais usados os pares de fibra com conectores ST ou SC.
- Caminhos separados de Transmissão (TX) e Recepção (RX) permitem uma transmissão a 200 Mbps.



## **Arquitetura Fast Ethernet**





• Links Fast Ethernet: geralmente conectam uma estação a um hub ou switch. Os hubs são considerados repetidores multiportas e os switches são considerados bridges multiportas.

| Arquitetura                                                                                  | 100BASE-TX | 100BASE-FX | 100BASE-TX e FX            |
|----------------------------------------------------------------------------------------------|------------|------------|----------------------------|
| Estação para Estação,<br>Estação para Switch,<br>Switch para Switch<br>(half ou full duplex) | 100 m      | 412 m      | N/A                        |
| Um repedidor<br>Classe I (half<br>duplex)                                                    | 200 m      | 272 m      | 100 m (TX)<br>160.8 m (FX) |
| Um repetidor<br>Classe II (half<br>duplex)                                                   | 200 m      | 320 m      | 100 m (TX)<br>208 m (FX)   |
| Dois repetidores<br>Classe II (half duplex)                                                  | 205 m      | 228 m      | 105 m (TX)<br>211.2 m (FX) |



## **Ethernet 1000-Mbps**

Camada Física de Sinalização

> Meio Físico





|                                       | C                                 | nada (                               | e de A                                 | cesso :                               | ao Mei                                 |                                        |                           | ×                   |
|---------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|---------------------------|---------------------|
| Coax N-Style 10BASE5<br>(500m) 50 Ohm | Coax BNC 10BASE2<br>(185m) 50 Ohm | UTP RJ-45 10BASE-T<br>(100m) 100 Ohm | JTP RJ-45 100BASE-TX<br>(100m) 100 Ohm | 7:bra SC 100BASE-FX<br>228 a 412m) MM | UTP RJ-45 1000BASE-T<br>(100m) 100 Ohm | Fibra SC 1000BASE-S)<br>(220 a 550) MM | Fibra SC 10GBASE-(vários) | ibra SC 1000BASE-L) |

- **Ethernet 1000-Mbps** ou Gigabit Ethernet utiliza nas transmissões, meios físicos tanto de fibra como de cobre.
- 1000BASE-X, IEEE 802.3z, especifica 1 Gbps full-duplex sobre fibra ótica.
- 1000BASE-T, IEEE 802.3ab, usa cabo de par trançado balanceado categoria 5, ou maior.

# Parâmetros Ethernet 1000-Mbps





| Parâmetro                               | Valor                 |
|-----------------------------------------|-----------------------|
| Tipos de Ethernet                       | 1 nsec                |
| Slot de Tempo                           | 4096 bit times        |
| Espaçamento Entre Quadros               | 96 bits *             |
| Limite de Tentativa de Colisão          | 16                    |
| Limite de Backoff de Colisão            | 10                    |
| Tamanho do Bloqueio de Colisões         | 32 bits               |
| Tamanho Máximo de Quadros Sem Etiquetas | 1518 octetos          |
| Tamanho Mínimo de Quadros               | 512 bits (64 octetos) |
| Limite de Seqüência                     | 65.536 bits           |

• 1000BASE-TX, 1000BASE-SX e 1000BASE-LX usam os mesmos parâmetros de temporização e um tempo de bit de 1 nanosegundo.





<sup>\*</sup> O valor listado é o espaçamento entre quadros (interfame spacing) oficial.

## Vantagens do Gigabit Ethernet em Fibra





- Imunidade ao ruído.
- Nenhum problema potencial de aterramento.
- Excelentes características de distâncias.
- Muitas opções do dispositivo 1000BASE-X.
- Pode ser usado para conectar segmentos Fast Ethernet amplamente dispersados.
- Padrão IEEE 802.3 recomenda Gigabit Ethernet através de fibra para o backbone.



## **Ethernet 10-Gigabit**





| Parâmetro                                      | Valor                 |
|------------------------------------------------|-----------------------|
| Bit Time (tempo de bit)                        | 0.1 ns                |
| Slot Time                                      | não aplicável *       |
| Interframe Spacing (espaçamento entre quadros) | 96 bits **            |
| Collision Attempt Limit                        | não aplicável *       |
| Collision Backoff Limit                        | não aplicável *       |
| Collision Jam Size                             | não aplicável *       |
| Maximum Untagged Frame Size                    | 1518 octetos          |
| Minimum Frame Size                             | 512 bits (64 octetos) |
| Burst Limit                                    | não aplicável *       |
| Interframe Spacing Stretch Ratio               | 104 bits ***          |

<sup>\*</sup> A Ethernet de 10 Gbps n\u00e3o permite a opera\u00e7\u00e3o em half duplex, por isso os par\u00e1metros relacionados ao processamento da temporiza\u00e7\u00e3o e colis\u00e3o de slots n\u00e3o se aplicam.

 IEEE 802.3ae foi adaptado para incluir transmissões 10 Gbps full-duplex, através de cabos de fibra óptica.
 Ethernet 10-Gigabit está evoluindo para redes locais, MANs e WANs.



<sup>\*\*</sup> O valor listado é o espaçamento padrão entre quadros.

<sup>\*\*\*</sup> A Razão de Descompactação de Espaço entre Quadros se aplica exclusivamente às definições 10GBASE-W.

# Implementações Ethernet 10-Gigabit





- 10GBASE-SR: destinado a curtas distâncias através de fibras multimodo já instaladas, suporta uma distância entre 26 m e 82 m.
- 10GBASE-LX4: utiliza WDM (Wavelength Division Multiplexing), suporta distâncias de 240 m a 300 m através das fibras multimodo já instaladas, e 10 km através de fibras monomodo.
- 10GBASE-LR e 10GBASE-ER: suporta de 10 km a 40 km através de fibra monomodo.
- 10GBASE-SW, 10GBASE-LW e 10GBASE-EW: conhecidos de forma genérica como 10GBASE-W são destinados a funcionar com equipamentos OC-192 STM (synchronous transport module) SONET/SDH para WAN.

# Implementações Ethernet 10-Gigabit

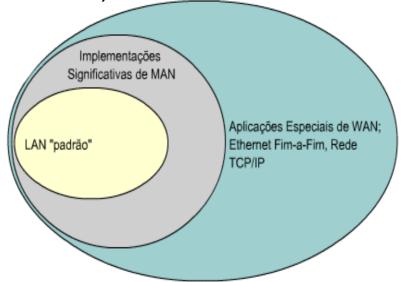




| Implementação | Comprimento<br>de Onda | Meio       | Largura de<br>Banda Mínima<br>Modal | Distância<br>de<br>Operação |
|---------------|------------------------|------------|-------------------------------------|-----------------------------|
| 10GBASE-LX4   | 1310 nm                | 62.5µm MMF | 500 MHz/km                          | 2 - 300 m                   |
| 10GBASE-LX4   | 1310 nm                | 50µm MMF   | 400 MHz/km                          | 2 - 240 m                   |
| 10GBASE-LX4   | 1310 nm                | 50μm MMF   | 500 MHz/km                          | 2 - 300 m                   |
| 10GBASE-LX4   | 1310 nm                | 10μm MMF   | N/A                                 | 2 - 10 km                   |
| 10GBASE-S     | 850 nm                 | 62.5µm MMF | 160 MHz/km                          | 2 - 26 m                    |
| 10GBASE-S     | 850 nm                 | 62.5µm MMF | 200 MHz/km                          | 2 - 33 m                    |
| 10GBASE-S     | 850 nm                 | 50μm MMF   | 400 MHz/km                          | 2 - 66 m                    |
| 10GBASE-S     | 850 nm                 | 50μm MMF   | 500 MHz/km                          | 2 - 82 m                    |
| 10GBASE-S     | 850 nm                 | 50μm MMF   | 2000 MHz/km                         | 2 - 300 m                   |
| 10GBASE-L     | 1310 nm                | 10μm SMF   | N/A                                 | 2 - 10 km                   |
| 10GBASE-E     | 1550 nm                | 10μm SMF   | N/A                                 | 2 - 30 km                   |

- Alguns dos comprimentos máximos de cabo são surpreendentemente curtos.
- Não há repetidor definido para Ethernet 10-Gigabit já que o half-duplex não é explicitamente suportado.






#### **Futuro da Ethernet**





- O futuro dos meios físicos de rede engloba três fatores:
  - Cobre (até 1000 Mbps, talvez mais).
  - Wireless (aproximadamente 100 Mbps, talvez mais).
  - Fibra ótica (atualmente até 10.000 Mbps e em breve será mais).



