



# Capítulo 9 - Conjunto de Protocolos TCP/IP e Endereçamento IP







## História e Futuro do TCP/IP





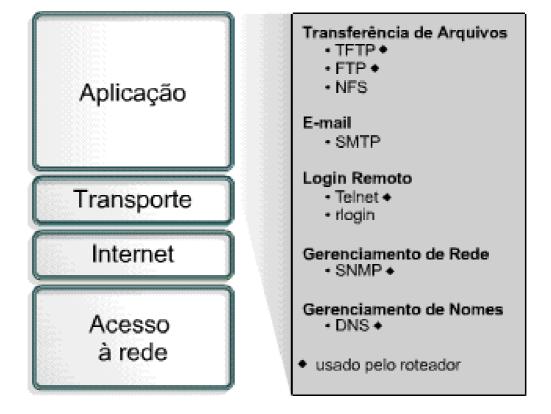
Aplicação

Transporte

Internet

Acesso à Rede

- O modelo de referência **TCP/IP** foi desenvolvido pelo Departamento de Defesa dos Estados Unidos (DoD).
- O DoD exigia transmissão confiável de dados sob quaisquer circunstâncias. A criação do modelo TCP/IP ajudou a resolver esse difícil problema de projeto.
- O modelo TCP/IP tornou-se o padrão no qual a Internet se baseia.
- A versão atual do TCP/IP foi padronizada em setembro de 1981.




## Camada de Aplicação (TCP/IP)





 A Camada de Aplicação trata de protocolos de alto nível, questões de representação, codificação e controle de diálogos.





## Camada de Transporte (TCP/IP)





- Oferece serviços de transporte fim-a-fim formando uma conexão lógica entre dois pontos da rede e define a conectividade ponto-a-ponto entre as aplicações do host.
- Os serviços de transporte incluem serviços TCP e UDP.
  - TCP e UDP:
  - Segmentação de dados das aplicações da camadas superiores;
  - Envio de segmentos de um dispositivo em uma ponta para um dispositivo em outra ponta.
  - Somente TCP:
  - Estabelecimento de operações ponta-a-ponta;
  - Controle de fluxo proporcionado pelas janelas móveis;
  - Confiabilidade proporcionada pelos números sequência e confirmações.

    Sequência e confirmações.

    Sequência dos Instrutores NetAcademy - Julho de 2007 - Página

## Camada de Internet (TCP/IP)





- A Camada de Internet tem a função de determinar o melhor caminho para transmitir dados através da rede.
- A determinação do melhor caminho e a comutação de pacotes ocorrem nesta camada.



• Os principais protocolos da Camada de Internet são: IP, ICMP, ARP e RARP.





## Camada de Acesso à Rede (TCP/IP)





Aplicação

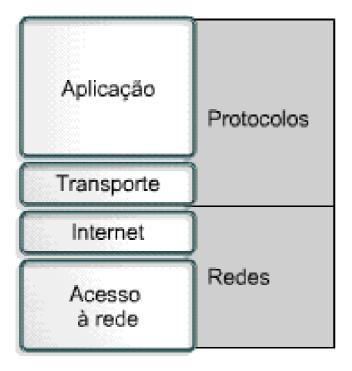
Transporte

Internet

Acesso
à rede

Ethernet
Fast Ethernet
SLIP & PPP
FDDI
ATM, Frame Relay e SMDS
ARP
Proxy ARP
RARP

- A Camada de Acesso à Rede fornece uma interação entre o software, o hardware e os meios físicos da rede.
- Realiza o mapeamento do endereço ip para o endereço físico, encapsula os pacotes em quadros e define a conexão com os meios físicos da rede.




## Modelo OSI X Modelo TCP/IP





#### TCP/IP Modelo



#### OSI Modelo







#### Modelo OSI X Modelo TCP/IP





#### Semelhanças:

- Ambos são divididos em camadas;
- Ambos são divididos em camadas de transporte e de rede equivalentes;
- A tecnologia de comutação de pacotes (e não de comutação de circuitos) é presumida por ambos;
- Os profissionais de rede precisam conhecer ambos os modelos.



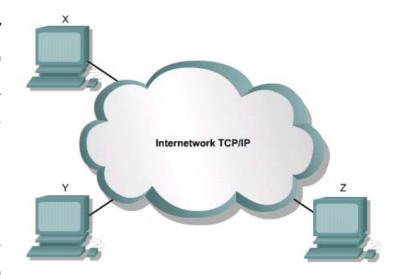
#### Modelo OSI X Modelo TCP/IP





#### Diferenças:

- O TCP/IP combina as camadas de apresentação e de sessão dentro da sua camada de aplicação;
- O TCP/IP combina as camadas física e de enlace do modelo OSI em uma única camada;
- O TCP/IP parece ser mais simples por ter menos camadas.

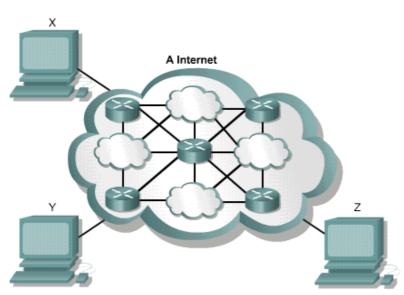



## Arquitetura da Internet





- A Internet permite a comunicação de dados entre hosts em qualquer lugar do mundo.
- A Internet é formada por uma rede de redes, sendo que a Internet desenvolvida a partir do DoD é conhecida como **Internet** (com maiúsculo).
- A Internet utiliza modelo em camadas, o que gerou uma diversidade muito grande de tecnologias nas camadas 01 e 02 e uma variedade de aplicações para as camadas 05, 06 é 07.





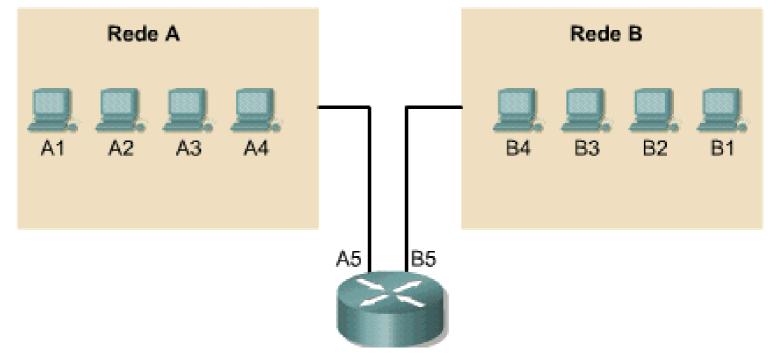

## Arquitetura da Internet







- A estrutura dentro da nuvem da **Internet** é bastante complexa, mas é transparente ao usuário.
- Os roteadores são responsáveis por tomarem decisões sobre as rotas para comunicação entre 02 redes.




# Endereçamento IP

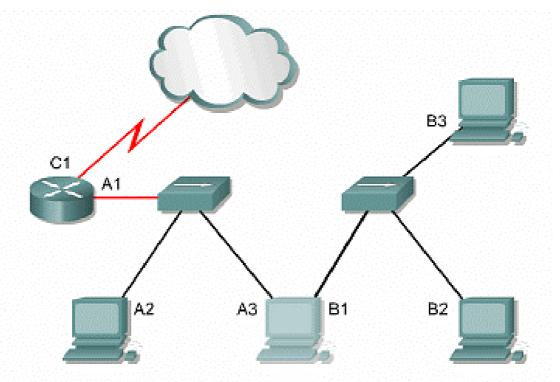




- O IP é o endereço da Camada 03, que tem a função de identificar a localização da rede e do host.
- O **endereçamento IP** é composto de 32 bits divididos em 04 octetos, exibidos em 04 números decimais separados por pontos.








## Endereçamento IP





 Um computador conectado a duas redes diferentes, precisa de duas interfaces de rede, cada uma com um endereço de rede e um endereço de host exclusivo nessa rede.







## Conversão Decimal/Binário





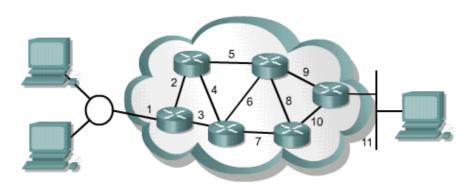
Dois Bytes (Número de Dezesseis Bits):

| 2 <sup>15</sup> | 2 14  | 213  | 212  | 2 11 | 2 10 | 29  | 28  | 27  | 26 | 25 | 24 | 23 | 22 | 21 | 2 <sup>0</sup> |
|-----------------|-------|------|------|------|------|-----|-----|-----|----|----|----|----|----|----|----------------|
| 32768           | 16384 | 8192 | 4096 | 2048 | 1024 | 512 | 256 | 128 | 64 | 32 | 16 | 8  | 4  | 2  | 1              |

• Conversão de 104 decimal para 01101000 binário:

| Potência da Posição | 27  | 2 <sup>6</sup> | 2 <sup>5</sup> | 24 | 2 <sup>3</sup> | 22 | 21 | 2 <sup>0</sup> |
|---------------------|-----|----------------|----------------|----|----------------|----|----|----------------|
| Valor Decimal       | 104 | 104            | 40             | 8  | 8              | 0  | 0  | 0              |
| Valor da Posição    | 128 | 64             | 32             | 16 | 8              | 4  | 2  | 1              |
| Contagem Binária    | 0   | 1              | 1              | 0  | 1              | 0  | 0  | 0              |
| Resto               | 104 | 40             | 8              | 8  | 0              | 0  | 0  | 0              |




## Endereçamento IPv4





#### Caminho de Comunicação da Camada de Rede:

- Usando o endereço IP da rede de destino, um roteador pode entregar um pacote para a rede correta.
- Quando o pacote chega a um roteador conectado à rede de destino, esse roteador usa o endereço IP para localizar o computador específico conectado a essa rede.



O endereço representa o caminho das conexões dos meios





# Endereçamento IPv4





- O endereço IP tem duas partes:
  - rede: identifica a rede a qual o sistema está conectado;
  - host: identifica o sistema específico na rede.

 O limite entre a parte de host e de rede, é definido pela máscara coringa.

Exemplo:

IP 192.168.10.20

(Rede / Host)

Máscara

255.255.255.0

| Rede | Host |
|------|------|
| 1    | 1    |
|      | 2    |
|      | 3    |
| 2    |      |
| 3    | 1    |

## Endereçamento IPv4





- Endereços de **Classe A** são atribuídos a redes de grande porte.
- Endereços de **Classe B** são usados para redes de médio porte.
- Endereços de Classe C são usados para redes pequenas.
- **OBS:** O intervalo 127.x.x.x é reservado para loopback (testes). Classe de Endereço Número de Redes Número de Hosts por Rede

| Classe de Endereço | Número de Redes | Número de Hosts por Rede |
|--------------------|-----------------|--------------------------|
| A                  | 126 *           | 16,777,216               |
| В                  | 16, 384         | 65,535                   |
| С                  | 2,097,152       | 254                      |
| D (Multicast)      | N/A             | N/A                      |

| Classe de<br>Endereço IP | Bits de Ordem<br>Superior | Intervalo de<br>Endereços do<br>Primeiro Octeto | Número de Bits no<br>Endereço de Rede |
|--------------------------|---------------------------|-------------------------------------------------|---------------------------------------|
| Classe A                 | 0                         | 0 - 127 *                                       | 8                                     |
| Classe B                 | 10                        | 128 - 191                                       | 16                                    |
| Classe C                 | 110                       | 192 - 223                                       | 24                                    |
| Classe D                 | 1110                      | 224 - 239                                       | 28                                    |



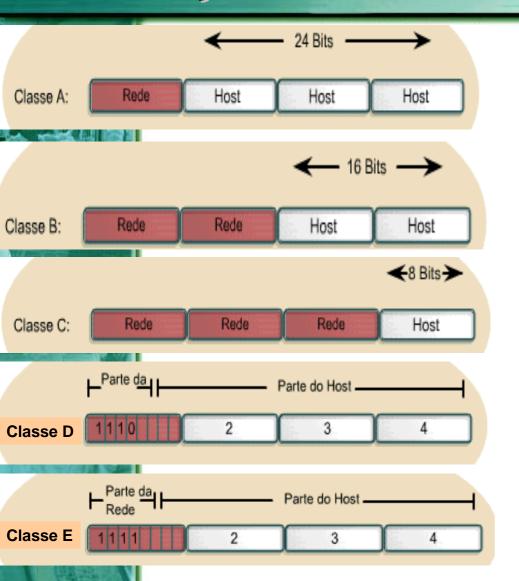
## Endereços IP Classes A, B, C, D e E





| Classe A | Rede | Host |   |   |  |
|----------|------|------|---|---|--|
| Octet    | 1    | 2    | 3 | 4 |  |

| Classe B | Rede |   | Host |   |  |
|----------|------|---|------|---|--|
| Octet    | 1    | 2 | 3    | 4 |  |


| Classe C | Rede | Host |   |   |
|----------|------|------|---|---|
| Octet    | 1    | 2    | 3 | 4 |

| Classe D | Host |   |   |   |  |  |
|----------|------|---|---|---|--|--|
| Octet    | 1    | 2 | 3 | 4 |  |  |

- Os **endereços IP** são divididos em grupos chamados classes, com o intuito de acomodar redes de diversos tamanhos (endereçamento classful).
- Classe A: é uma classe para redes de grande porte, com apenas o primeiro octeto representando a parte da rede e os demais octetos representando a parte do host. O primeiro bit de um endereço classe A deve ser Q.

#### Endereços IP Classes A, B, C, D e E





- Classe B: é uma classe para redes de médio porte, com apenas os dois primeiros octetos representando a parte da rede e os demais octetos representando a parte do host. Os primeiros dois bits de um endereço classe B devem ser 10.
- Classe C: é uma classe para redes de pequeno porte, com apenas os três primeiros octetos representando a parte da rede e os demais octetos representando a parte do host. Os primeiros três bits de um endereço classe C devem ser 110.

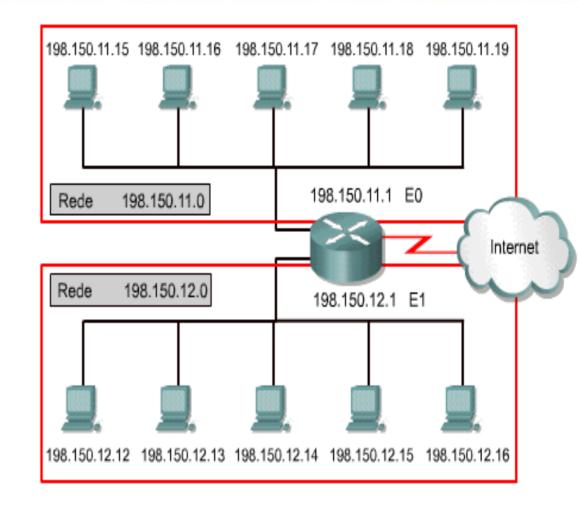
### Endereços IP Classes A, B, C, D e E





| Classe de endereços IP | Intervalo de endereços IP (Valor Decimal do Primeiro Octeto) |
|------------------------|--------------------------------------------------------------|
| Classe A               | 1-126 (00000001-01111110) *                                  |
| Classe B               | 128-191 (10000000-10111111)                                  |
| Classe C               | 192-223 (11000000-11011111)                                  |
| Classe D               | 224-239 (11100000-11101111)                                  |
| Classe E               | 240-255 (11110000-11111111)                                  |

- Classe D: multicast, é um endereço de rede exclusivo que direciona os pacotes de déstino para grupos predefinidos de endereços IP.
- Classe E: IETF reserva esses endereços para suas próprias pesquisas.



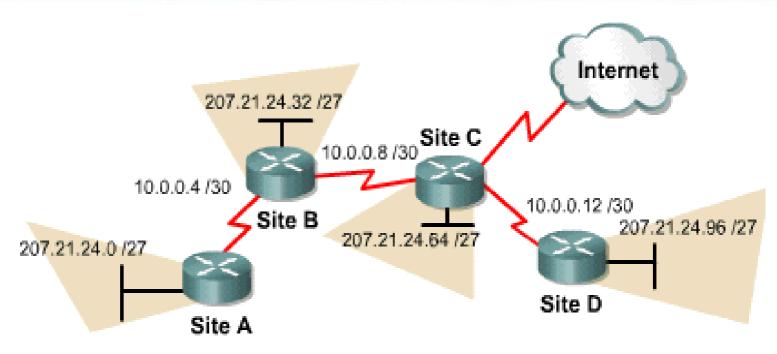



## Endereços IP Reservados



- Existem endereços reservados que não podem ser atribuídos a nenhum dispositivo na rede, tais como:
  - Endereço de rede: endereço utilizado para identificar a rede;
  - Endereço de broadcast: endereço utilizado para uma origem enviar dados para todos os hosts em uma rede.








## Endereços IP Públicos e Privados







 Os hosts que estiverem conectados a rede pública (Internet) precisam de um endereço IP exclusivo que é gerenciado pela IANA, porém o rápido crescimento da Internet, originou a escassez de IPs.



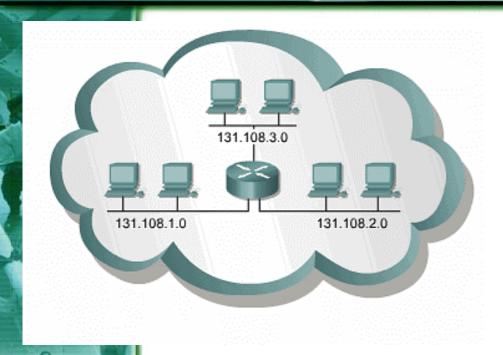


## Endereços IP Públicos e Privados





| Classe | Intervalo de endereços internos RFC 1918 |
|--------|------------------------------------------|
| A      | 10.0.0.0 to 10.255.255.255               |
| В      | 172.18.0.0 to 172.31.255.255             |
| С      | 192.168.0.0 to 192.168.255.255           |


- O CIDR e o IPV6 são esquemas de endereçamento que foram criados para solucionar esse problema.
- Os Endereços IP Privados são uma outra solução para a escassez de IPs, pois as redes privadas não conectadas diretamente à Internet podem usar qualquer endereço e usar a técnica NAT para converter um endereço privado em público, a fim de navegar na Internet.

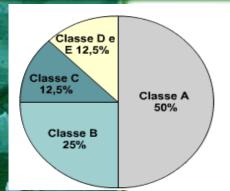




## Introdução às Sub-redes






|                                                         | A                      |                                             |                                             |                                             |
|---------------------------------------------------------|------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| Notação<br>decimal para o<br>primeiro<br>octeto de Host | Número de<br>Sub-redes | Número de<br>Hosts Classe A<br>por Sub-rede | Número de<br>Hosts Classe B<br>por Sub-rede | Número de<br>Hosts Classe C<br>por Sub-rede |
| .192                                                    | 2                      | 4,194,302                                   | 16,382                                      | 62                                          |
| .224                                                    | 6                      | 2,097,150                                   | 8,190                                       | 30                                          |
| .240                                                    | 14                     | 1,048,574                                   | 4,094                                       | 14                                          |
| .248                                                    | 30                     | 524,286                                     | 2,046                                       | 6                                           |
| .252                                                    | 62                     | 262,142                                     | 1,022                                       | 2                                           |
| .254                                                    | 126                    | 131,070                                     | 510                                         | -                                           |
| .255                                                    | 254                    | 65,534                                      | 254                                         | -                                           |

- As sub-redes permitem ao administrador, dividir e identificar redes independentes, além de serem necessárias para redes de grande porte e opcionais para redes pequenas.
- Para serem criadas subredes, o administrador deverá manipular a máscara de sub-rede, pegando bits emprestados do campo de host.
- A quantidade mínima de bits emprestados é 2 e devese deixar sobrando pelo menos 2 bits para hosts.



#### IPv4 X IPv6





| Internet Protocol Version 4 (IPv4)  | 4 octetos |
|-------------------------------------|-----------|
| 11010001.11011100.11001001.01110001 |           |
| 209.158.201.113                     |           |
| 4.294.467.295 endereços IP          |           |

- Quando o **IPv4** foi desenvolvido, não era previsto que ele sustentaria uma rede do tamanho da Internet, o que de fato ocasionou uma escassez de endereços para a atual necessidade.
- Com as classes A e B de endereços virtualmente esgotadas, restaram os endereços de classe C, o qual infelizmente não atendem as necessidades das grandes organizações, pois tem um limite de 254 hosts por rede.
- Mesmo que existisse um número maior de redes classe A, B ou C, os atuais roteadores da Internet não suportariam o aumento no número de rotas na tabela de roteamento.

#### IPv4 X IPv6





- O IPv6 é uma versão mais extensível e escalonável do IP, porém sua implementação está sendo realizada lentamente em algumas redes.
- A representação abreviada do IPv6 para os 128 bits, usa oito números de 16 bits, mostrados como quatro dígitos hexadecimais.

#### 



## Atribuição Estática do Endereço IP



- Servidores, impressoras de rede, servidores de aplicativos e os roteadores devem receber um endereço IP estático, para que as estações de trabalho e os outros dispositivos sempre saibam como acessar os serviços necessários.
- Imagine a dificuldade que seria telefonar para uma empresa que mudasse de número de telefone todos os dias.

|                   | WINS Address Routing                    |
|-------------------|-----------------------------------------|
| Adapter:          | _                                       |
| [1] Fast Ethernet |                                         |
| Obtain an IP      | address from a DHCP server              |
| Specify an I      | P address                               |
| IP Adress:        | 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  |
| Sybnet Mask:      | (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |
| Defult Gatewa     | y;                                      |
| -                 | A <u>d</u> vanced                       |





#### Gerenciamento de IP com DHCP





Estrutura de Mensagens DHCP:

| 0 -7 bits         | 8 -15 bits     | 16 - 23 bits      | 24 - 31 bits |
|-------------------|----------------|-------------------|--------------|
| Op (1)            | Htype (1)      | HLen (1)          | Hops (1)     |
|                   | Xid (          | lbytes)           |              |
| Seconds (2 bytes) |                | Flags (2 bytes)   |              |
|                   | Ciaddr         | (4 bytes)         |              |
|                   | Yiaddr         | (4 bytes)         |              |
|                   | Siaddr         | (4 bytes)         |              |
|                   | Giaddr         | (4 bytes)         |              |
|                   | Chaddr         | (16 bytes)        |              |
|                   | Server Host N  | lame (64 bytes)   |              |
|                   | Boot File Na   | me (128 bytes)    |              |
|                   | Vendor Specifi | c Area (variable) |              |
|                   | DHCP mess      | sage structure    |              |

- O **DHCP** (Dynamic Host Configuration Protocol) é o sucessor do BOOTP.
- Diferentemente do BOOTP, o DHCP permite que um host obtenha um endereço IP dinamicamente sem que o administrador da rede tenha que configurar um perfil individual para cada dispositivo.