
A Distributed Shared Memory System Oriented to
Volume Visualisation

Marcelo Knörich Zuffo
Roseli de Deus Lopes
Volnys Borges Bernal

[mkzuffo, roseli, volnys]@lsi.usp.br

Laboratório de Sistemas Integráveis
Departamento de Engenharia Eletrônica

Escola Politécnica da Universidade de São Paulo
Av. Prof. Luciano Gualberto, trav.3 n. 158, 05508-900 São Paulo, SP, Brazil

Abstract: In this paper we propose the use of the Distributed Shared Memory (DSM) paradigm
for parallel volume visualisation. The goal is to offer a comprehensive and portable
programming model that exploits the parallelism and data coherency commonly found in
volume visualisation. Our approach is based on the development of a library layer that offers a
simple and straightforward programming interface. This programming model allows users to
implement volume visualisation programs that run on sequential and parallel computing
environments. The library provides a contiguous shared memory space, synchronisation, task
scheduling, data spatial partitioning and I/O services. In order to achieve better performance,
users should tune their programs through re-configurable parameters such as loop scheduling,
volume data access mode, block shape, and cache size. Preliminary results are presented based
on a library implementation that runs over IEEE POSIX threads, Message Passing Interface
(MPI) and UNIX interfaces on an MEIKO-CS2 Multicomputer with 10 processing elements.

Key words: Volume Visualisation, Parallel and Distributed Processing, Distributed Shared
Memory.

1 Introduction
Currently, scientific visualisation is an essential tool for several knowledge fields, allowing

professionals and scientists to enhance the analysis, understanding and learning of natural
phenomena, through simulations and instrumentation that generate volumetric data. Volume
Visualisation is concerned with the representation, manipulation and rendering of such
volumetric data [2], and is an important set of techniques and algorithms for many scientific
visualisation applications.

Parallel computing systems are becoming a common execution environment for the increasing
computing demand of typical scientific applications. These systems are available as Shared
Memory Parallel Computers (multiprocessors), Distributed Memory Parallel Computers
(multicomputers) or clusters of workstations connected by high-speed networks.

We propose the use of the Distributed Share Memory (DSM) paradigm for implementing
parallel volume visualisation programs for multicomputers and clusters of workstations.

The DSM paradigm offers a programming model that makes the physically distributed memory
accessible to all processing elements. This paradigm offers a general and convenient
programming model that enables simple data sharing through the uniform mechanism of reading
and writing data structures in the distributed memory.

We have designed and implemented a DSM system oriented to volume visualisation
applications. This system takes advantage of the strong data coherence and parallelism
commonly found in many volume visualisation algorithms. The proposed DSM system is a
library layer interface called PVV1 (Parallel Volume Visualisation). The PVV library was
designed for implicit and explicit parallel programming of volume visualisation supporting a
wide range of volume rendering algorithms [4], 2D and 3D image processing algorithms.

2 Previous Work
Corrie and Mackerras [3] proposed the use of DSM for volume rendering, they implemented a
volumetric ray-casting algorithm based on a read-only DSM for an AP1000 Multicomputer. The
authors considered the worker-farm paradigm using an image-space task sub-division and to
achieve good load balancing the image was subdivided in equal size squares. A speed-up of
108.2 for 127 processors was reported. The authors pointed out the importance of correct cache
size to avoid page thrashing.

Some authors implemented volume rendering algorithms in shared memory parallel systems.
Nieh and Levoy [8] implemented the ray-casting algorithm on the DASH shared memory
parallel computer. The authors reported the advantages of programming shared memory systems
and the need for good load balancing. Lacroute [5] implemented a Shear-warp algorithm on a
Silicon Graphics Challenge shared memory parallel machine. A performance of 10 frames a
second for a 2563 volume was achieved using dynamic load balancing and a task partitioning
strategy to avoid synchronisation events. The main conclusion of using shared memory parallel
computers is that the communication costs and data redistribution do not dominate rendering
time, and that cache locality requirements impose a limit on scalability in such parallel
machines.

The performance of volume rendering methods in mesh-connected Multicomputers was studied
by Neumann [7]. The author considered independently the parallel algorithms and the volume
rendering methods, and pointed out how the parallel algorithm has a major impact on the
communication requirements among processing elements and on the overall performance of the
system. Neumann observed that the communication cost in many parallel volume rendering

1This project was funded by The European Commission, program Information Technologies for
Developing Countries Contract ITDC-225, and Fundação para o Amparo à Pesquisa do Estado de São
Paulo, FAPESP Contract 95-2747-6.

algorithms decreases as the data and system sizes grow, suggesting scalability of such
algorithms for big datasets and massively parallel computers.

3 System Organisation and Design
To guarantee program portability, the PVV library offers a programming interface that is
independent from the parallel system architecture. To guarantee system portability, across
different parallel machines, the DSM sub-system was implemented in software, and the PVV
library was implemented on top of parallel programming standards such as the Message Passing
Interface (MPI), IEEE POSIX Threads (Pthreads) and Unix standard interfaces and system calls.

Volume Visualisation Applications

Parallel Computer

Message Passing Interface
(MPI)

IEEE POSIX Threads
Pthreads

UNIX Standard Libraries and
System Calls

I/O
Manager

Distributed
Shared

Memory
Manager

Task
Scheduling
Manager

Message Passing Manager

SPMD Programming Interface

Synchronisation
Manager

PVV Library

Figure 1- PVV Library Organisation

The PVV library offers the following functionality:

• Data representation and I/O;

• Transparent manipulation of shared data such as volumes, images and arrays2;

• Explicit parallel programming constructions such as node identification and synchronisation;

• Implicit parallel programming constructions such as loop management and task scheduling
control.

Figure 1 shows the PVV library organisation.

The I/O Manager is a thread responsible for the I/O calls in the PVV library. This manager
supports the PVV_read_volume and PVV_write_volume calls. These calls guarantee I/O
operations for a distributed volume among the processing elements.

The Task Scheduling Manager is responsible for task distribution among the processing
elements. Section 4.4 describes the task scheduling strategies adopted.

2 In the PVV library, there are functions and macros to represent and manipulate volumes (3D), images
(2D) and arrays (1D) in the same fashion. To avoid repetition we will refer only to the functionality
related with volumes.

The DSM manager is responsible for offering a transparent and contiguous addressing space on
top of the physical distributed memory of the processing elements. The DSM is described in
section 4.

The synchronisation manager is a thread responsible to synchronise activities among the
processing elements. To perform explicit synchronisation PVV offers the call PVV_sync(),
Program 2 shows an example of such call.

The Message Passing Manager is a thread responsible for the managing of all messages arriving
from the other processing elements. The incoming messages could be synchronisation requests,
block migration, directory updates, I/O requests, and task assignments.

3.1 The Programming Interface
The programming interface was designed to ensure program portability across different MIMD
parallel computers, including distributed memory systems, clusters of workstations and shared
memory parallel systems.

The PVV library provides a single and shared address space for volumes (3D), images (2D) and
arrays (1D), facilitating the programming effort avoiding for the user all problems related with
parallel volume visualisation programming such as data partitioning and task scheduling.

The interface is based on an ANSI-C library. The programs run in parallel using the Single
Program Multiple Data paradigm (SPMD), where the same program is loaded and executed in
the different processing elements.

3.1.1 Implicit Parallelism
For many volume visualisation programs, such as ray-casting and 3D convolution filtering, users
can take advantage of intrinsic volume visualisation parallelism and write implicit parallel
programs with some PVV constructions.

#include <pvv.h>

int main(int argc, char *argv[])
{
PVV_volume_t vol = NULL;
PVV_byte_t voxel;

PVV_init(&argc, &argv); /* Init PVV Managers */

PVV_SET_SUBVOLUME_BLOCK(8, 8, 8);
vol = PVV_create_volume(256, 256, 256, PVV_BYTE_ID);

PVV_SET_VOXEL_INTERVAL (vol, 20, 20, 20, 100, 100, 100);
PVV_SET_SCHEDULING (vol, PVV_CONTIGUOUS);
PVV_FOR_EACH_VOXEL_BEGIN (vol)

{ /* Some processing that will be applied to the current voxel */
.
.
.
PVV_PUT_CURRENT_VOXEL(vol, voxel, PVV_byte_t);
}

PVV_FOR_EACH_VOXEL_END

PVV_write_volume(vol, “filename”, PWF);

PVV_finalize(); /* Finish PVV Managers */
}

Program 1 – Creating, Manipulating and Writing Volumes With Implicit Parallelism

Through the use of the SPMD programming paradigm, PVV programs can be executed
sequentially and without any modification can be executed in parallel.

Program 1 shows a simple PVV program with implicit parallelism. This program creates a 2563

volume subdivided in 83 sub-volumes. Some processing is done in the sub-volume defined by
the (20, 20, 20) and (100, 100, 100) vertices, finally the volume is write to the disk. The loop
PVV_FOR_EACH_VOXEL is executed in parallel with PVV_CONTIGUOUS scheduling. A better
description of this PVV library functionality will be described in further sections.

3.1.2 Explicit Parallelism
In some particular cases, the parallelism of volume visualisation algorithms is not so
straightforward, and these algorithms should be implemented in parallel using explicit SPMD
parallel constructions. In this situation, the user should take care of the program execution flow,
assigning explicitly the computation that will executed in parallel for each processing element,
and taking care of the synchronisation among the processing elements.

Program 2 shows an example of explicit parallelism. In this program a 2563 volume is created,
processing element 0 will initialise the volume sequentially with 0, while the remaining
processing elements will perform another tasks in parallel. In the end of the switch all processing
elements are synchronised.

#include <pvv.h>

int main(int argc, char *argv[])
{
PVV_volume_t vol = NULL;
PVV_byte_t voxel;

PVV_init(&argc, &argv); /* Init PVV Managers */

vol = PVV_create_volume(256, 256, 256, PVV_BYTE_ID);

switch(PVV_MY_NODE)
{
case 0: /* Init volume vol sequentially in Node 0 */

for(k=0; k<vol->resK; k++)
 for(j=0; j<vol->resJ; j++)
 for(i=0; i<vol->resI; i++);

{
voxel = 0;
PVV_PUT_VOXEL(vol, i, j, k, voxel, PVV_byte_t);
}

break;

case 1: /* Do something in Node 1 */
.
.

break;
.
.
}

PVV_sync(); /* Synchronise all nodes */

PVV_finalize(); /* Finish PVV Managers */
}

Program 2 – Explicit Parallel Programming

4 A DSM Oriented to Volume Visualisation
We adopted a fixed block size DSM; each block holds a group of voxels. The block has a spatial
organisation in order to exploit coherence. The consistency model adopted is the sequential
model.

4.1 The Block Management Protocol
Each shared data structure such as a volume, image or array can be partitioned in a set of regular
shape blocks. The block size and shape can be a user-defined property of a data structure.

The block management protocol is based on the Single Reader/Single Writer Algorithm (SRSW)
[1]. The blocks are distributed among the processing elements. Each processing element is
responsible to manage all access requests related to the local blocks from other processing
elements.

When a shared data structure is created, it is partitioned in blocks that are distributed among the
processing elements in the Permanent Block List. Upon request the blocks can migrate to
another processing element and are stored in the Temporary Block List. This kind of DSM
protocol is called hot potato [1]. Information about the current block location is held in the
Block Directory. We choose this protocol due to the considerable amount of volumetric data to
be manipulated and the little block sharing observed in many parallel volume visualisation
algorithms.

For read/write volumes, only one valid copy of the block exists at any time, and the block
migrates through the processing elements. For read-only volumes many copies of a block could
be replicated among the processing elements. By default all volumes are read/write. The PVV
library allows users to any time change the volume access mode to read-only or read-write.

The Temporary Block List acts as a cache and the replacement block policy is the Not Recently
Used (NRU) algorithm. The advantage of the NRU algorithm is its smaller computational cost
compared with the Least Recently Used (LRU) algorithm. The Temporary Block List size, in
blocks, is a user-defined property of a shared data structure and its correct size definition for
different algorithms is important to avoid block thrashing. The DSM granularity is the block.

Figure 2 shows all possible block transactions among processing elements. Which are the
following 5 situations:

• Situation A: A processing element (requester) asks for a block from its block server
(provider). The block migrates to the Temporary List (TL). The Owner Block Directory is
updated;

• Situation B: A processing element replaces a dirty block in its Temporary List, this block is
writes-back (migrates) to the Permanent List (PL) of the Provider. The Provider Block
Directory is updated;

• Situation C: A processing element replaces a clean block in its Temporary List, this block is
frees. The Provider Block Directory is updated;

• Situation D: A processing element requests a block from its Provider. The Provider
redirects the requisition to another processing element that owns the block. The block
migrates. The Provider Block Directory is updated;

• Situation E: A processing element requests a block to its Provider. The Provider redirects
the requisition to an Owner that did not own anymore the block (False Owner), the False
Owner redirect the requisition back to the Provider, that redirects the requisition to another
processing element that owns the block. The block migrates. The Provider Block Directory
is updated.

Situation A

Provider Requester

TL

D

PL

TL

D

PL

Situation B

Provider Temporary
Owner

TL

D

PL

TL

D

PL

Situation C

Provider Temporary
Owner

TL

D

PL

TL

D

PL

MPI process

Permanent List

Temporary List

Block Migration

Request

Redirection

Replacement

Directory Update

Provider Requester

TL

D

PL

TL

D

PL

Situation D

Temporary
Owner

TL

D

PL

Provider Requester

TL

D

PL

TL

D

PL

Situation E

False Owner

TL

D

PL

TL

D

PL

PL

D

TL

Block Directory

Temporary
Owner

Figure 2 – Block Transaction Map

4.2 Block Access and Block States
To provide transparent data access to shared data structures the PVV library offers the
PVV_PUT_VOXEL and PVV_GET_VOXEL constructions3, these constructions are built on top
of a more general constructions PVV_PUT_DATA and PVV_GET_DATA.. To enhance
performance these constructions are implemented with macros and they require as arguments,
the volume pointer, the voxel position (i, j, k) in the volume, a variable to be write or read and
the variable type to do proper alignment.

PVV_block_replacement frees a block from the Temporary List (TL) when this block is
clean, PVV_block_writeback writes back a block in its processing element provider when
a block is dirty.

The block status diagram is showed in Figure 3.

There are only three states, the contiguous line represents state transitions among the same
processing element. The dashed line represents state transitions among different processing
elements, in this case the block migrates with its current state.

3 There are the same constructions for images: PVV_PUT_PIXEL and PVV_GET_PIXEL, and for
arrays: PVV_PUT_AXEL and PVV_GET_AXEL.

State 1
PL

PVV_get_data

State 2
Clean
TL

State 3
Dirty
TL

PVV_put_data
PVV_get_data

PVV_get_data

PVV_get_data

PVV_block_replacement

PVV_put_data

PVV_put_data

PVV_put_data
PVV_get_data

PVV_put_data
PVV_get_data

PVV_put_data

PVV_block_writeback

Same Node

Different Node

Figure 3 – Block Status Diagram

4.3 Data Locality and Partitioning
Data locality is an inherent property of a considerable set of volume visualisation algorithms. In
order to take advantage of this property, the PVV library offers a mechanism to maintain data
locality by the spatial partitioning of the volumetric data in blocks. The blocks could be slices,
columns and cubes (Table 1).

This approach has many advantages, some of them are:

• Due to the DSM management protocol and the spatial dependency of some volume
visualisation algorithms (example ray-casting), an optimal block shape can be selected in
order to enhance data coherence;

• Due to the interconnection network characteristics that change for each different parallel
system, an optimal block size can be selected to minimise network latency and contention;

• Due to the memory hierarchy, an optimal block size can be chosen to fit the best primary
and secondary cache performance.

Sub-volume shape Sub-volume
resolution
(voxels)

Voxel size (bytes) Block size
(bytes)

Cube 16x16x16 1 4096

Column 256x4x4 1 4096

Slice 64x64x1 1 4096

Table 1 – Examples of Block Size and Shape

4.3.1 Table Oriented Voxel Addressing
We propose a mechanism for regular decomposition of Cartesian volumes by the use of
addressing tables. The advantages of addressing tables are:

• Fixed addressing cost for different block shapes;

• Same access interface for different block shapes;

• Faster method, when compared with arithmetic addressing evaluation;

• Allows fast incremental addressing;

For a volume, with resolution (resI, resJ, resK), we would like to evaluate a given voxel position
(i, j, k) address d. The addressing cost is fixed and defined by:

()d i j k I i J j K k, , [] [] []= + + (1)

We will subdivide the regular Cartesian volume into a set of regular and homogeneous blocks
(sub-volumes). We can arbitrarily choose the block resolution (resIL, resJL, resKL). The volume
resolution in terms of sub-volumes (resIH, resJH, resKH) is given by:

resI
resI

resI

resJ
resJ

resJ

resK
resK

resK

H
L

H
L

H
L

=

=

=

(2)

The voxel address (i, j, k) is decomposed in the High Address (iH, jH, kH) that corresponds to the
block index in the volume and the Low Address (iL, jL, kL) that corresponds to the voxel index in
the block. The voxel address could be evaluated by:

i i i resI

j j j resJ

k k k resK

L H L

L H L

L H L

= + ⋅
= + ⋅
= + ⋅

(3)

Each sub-volume has a regular size and shape defining a Block with B voxels:

B resI resJ resKL L L= ⋅ ⋅ (4)

We can evaluate the address by:

()
()

d i j k i j resI k resI resJ

i j resI k resI resJ B

L L L L L L

H H H H H H

, , = + ⋅ + ⋅ ⋅ +

+ ⋅ + ⋅ ⋅ ⋅
(5)

We can rewrite it as tables:

[]
[]
[]

I i i B i

J j j resI B j resI

K k k resI resJ B k resI resJ

L H

L L H H

L L L H H H

= + ⋅

= ⋅ + ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅ ⋅

(6)

We can observe that the total addressing cost could be reduced from 9 multiplications and 3
sums to 3 table accesses and 2 sums, this cost is fixed and independent from the block size and
shape.

Volume Memory
Base

dH(iH,jH,kH)
Block 1

Block 2

Block 3

Block n

dH(iH,jH,kH)

dL(iL,jL,kL)

 resKH

 resJH

 resIH i

j k

Block

 resKL

 resJL

 resIL

voxel

Figure 4 Regular block addressing

4.4 Parallel Loops and Task Scheduling
In many volume visualisation algorithms, there is quite often the need for some independent
processing in all voxels in a given voxel interval from a volume. To do that in parallel users can
write loops that can be parallelized using standard parallel processing techniques. The PVV
library offers the construction PVV_FOR_EACH_VOXEL to encapsulate this kind of common
need.

PVV_FOR_EACH_VOXEL is similar to the FORALL construction in Fortran 90. Program 1,
shows an example of the use of the PVV_FOR_EACH_VOXEL construction.

a) Line
PVV_SET_VOXEL_INTERVAL(vol,10,10,10,10,30,10)

(10,10,10)

(10,30,10)

b) Slice
PVV_SET_VOXEL_INTERVAL(vol,10,10,10,10,30,30)

(10,10,10)

(10,30,30)

(10,10,10)

(30,30,30)

c) Sub-volume
PVV_SET_VOXEL_INTERVAL(vol,10,10,10,30,30,30)

Figure 5 – PVV_SET_VOXEL_INTERVAL examples

The PVV_FOR_EACH_VOXEL construction defines a piece of program that should be applied
for each voxel in a given interval, this piece of program is called Virtual Voxel Machine
(VVM). The Virtual Voxel Machine has the following properties:

• One VVM is assigned to each voxel. In the PVV_FOR_EACH_VOXEL loop the current
voxel is identified by the Current Voxel Position CVA register. Since the current voxel
position is implicitly defined in a PVV_FOR_EACH_VOXEL loop, the special constructions
PVV_PUT_CURRENT_VOXEL and PVV_GET_CURRENT_VOXEL are used to perform
read/write operations respectively;

• VVMs executions are independent from each other; VVMs are grouped in tasks, and to
enhance coherence and locality, the tasks have the same block size and shape.

The VVMs executions could be set for a given interval inside a volume. The voxel interval (line,
slice or cube) is defined by the PVV_SET_VOXEL_INTERVAL construction, if the interval is

not defined the program will be applied to all volume voxels, examples of such construction are
shown in

• Figure 5.

Strategies for task scheduling fall into three main classes: Static, Dynamic and Random. The
scheduling strategies supported by PVV, showed in Figure 6, are:

• PVV_CONTIGUOUS: In this static scheduling strategy tasks are grouped in chunks that
are equally distributed among the processing elements;

• PVV_INTERLEAVED: the tasks are uniformly distributed among the processing elements;

• PVV_DYNAMIC: the tasks are distributed upon requests from the processing elements;

• PVV_RANDOM: the tasks are randomly distributed among the processing elements.

b) Dynamic 8x8

a) Contiguous 1x1

c) Interleaved 8x8 d) Random 8x8a) Contiguous 8x8

b) Dynamic 1x1 c) Interleaved 1x1 d) Random 1x1

Figure 6 – Scheduling strategies supported by PVV

Figure 6 shows the supported scheduling strategies maps considering 6 processing elements with
different colours. We used two block sizes 1x1 pixels and 8x8 pixels

4.5 Tuning for Performance
The use of DSM systems decrease a lot the user programming effort for the implementation of
parallel volume visualisation algorithms, however tuning is an essential step to achieve good
performance in different parallel systems.

The proposed DSM system has some tuneable parameters that should be configured for each
particular algorithm and parallel system.

The tuneable parameters are: Block Size, Block Size, Task Scheduling, Temporary List Size
and Data Structure Access Mode.

The block size parameter is a very important tuneable parameter. The block size is proportional
to the task granularity and DSM granularity. Since it affects directly the communications costs
and load balancing. We can consider that the communication cost in distributed memory parallel
systems is proportional to the interconnection network latency and throughput. Latency is a
constant communication cost for different message sizes, while throughput is almost linear
proportional to the block size. For small block sizes the latency is dominant in the
communication cost, for big block sizes the network contention is dominant in the
communication cost. Since the task granularity is defined also by the block size, small block
sizes offer a better load balancing among the processing elements. The block size should be a
trade-off among latency-related costs, load balancing and network contention communication
costs.

The Block shape is a tuneable parameter directly related with the data locality. Since the
majority of volume visualisation algorithms have strong spatial coherency, a good choice of
block shape can enhance performance by the increase of local accesses, avoiding block trashing
and taking advantage of the memory hierarchy. The block size and shape is a property of each
data structure supported by the PVV DSM and it can be set by the
PVV_SET_SUBVOLUME_BLOCK() construction (Program 1).

The task scheduling parameter is related with load balancing among the processing elements and
data locality. The scheduling strategy is set by the PVV_SET_SCHEDULING() construction.

The Data Structure Access Mode allows users to change the block management strategy for
replication, when a data structure is read-only on a given program interval. The Data Structure
Access Mode is set by the PVV_SET_MODE() construction.

5 Preliminarily Results
We implemented a version of our proposed DSM on a MEIKO-CS2 Multicomputer. The
MEIKO-CS2 is based on a Fat-Tree interconnection network with 100Mbit/s bi-directional link
per processing element. Each processing element is a Hypersparc 100MHz microprocessor with
a 128 Mbytes of RAM. The machine used has 10 processing elements. The operating system is
Solaris 2.3. We used the Argonne National Labs public domain MPI implementation, MPICH
v1.0.13 available at http://www.mcs.anl.gov/ and the public domain IEEE POSIX Pthreads
library available at: http://www.mit.edu:8001/people/proven/Pthreads.html.

We implemented and evaluated two volume visualisation programs: Volume Write/Read and
Volume Ray-Casting Rendering.

5.1 Volume Write/Read Program
Volume Write/Read is a very simple program with two PVV_FOR_EACH_VOXEL loops. The
first loop is responsible for writing a value in each voxel position, and the second loop is
responsible for reading and checking the value in each voxel position. We used a 2563 volume
subdivided into 163 blocks. The scheduling strategy adopted was PVV_CONTIGUOUS.

Figure 7 shows the Speed-up and Efficiency for 10 processing elements of the Read/Write
program. We can observe that the Efficiency is near 50% for the Write loop. That happens

because the block distribution does not match the scheduling, and block migration among the
processing elements occurs. The Efficiency for the Read loop is almost 100% since all blocks
are available in the local processing elements.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Number of Processing Elements

Speed-
up

MEIKO-CS2(a) Write

MEIKO-CS2(b) Read

Linear

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Number of Processing Elements

Efficienc
y

(%)

MEIKO-CS2(a) Write

MEIKO-CS2(b) Read

Figure 7 – Speed-up and efficiency for volume Write/Read Program

5.2 Volume Ray-Casting Program
We implemented the traditional ray-casting volume rendering algorithm. The volume resolution
used was 2563 and the block size was 163. The image resolution for the measurements is 5122

subdivided in 322 blocks. The program has two main loops, the first loop
PVV_FOR_EACH_VOXEL is used for the volume classification (RGBO mapping), and the
second loop PVV_FOR_EACH_PIXEL is used for casting rays to the volume. The scheduling
strategy for both loops is PVV_INTERLEAVED.

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Number of Processing Elements

Speedup

MEIKO-
CS2

Linear

0

10
20

30
40

50

60
70

80
90

100

1 2 3 4 5 6 7 8 9 10

Number of Processing Elements

Efficiency
(%)

MEIKO-
CS2

Figure 8 – Speed-up and Efficiency per Number of Processors for the Volume Ray-Casting
Program

Figure 8 shows the speed-up and efficiency for the Volume Ray-Casting program. We can
observe that the efficiency raised around 10% from 1 to 10 processing elements. Figure 9 shows
the memory demand for each processing elements, in this case we keep the Temporary Block
List size decreasing with the number of blocks. In Figure 9 we observe also the number of Page-
faults per processing elements for the volume and for the image, an interesting observation is
that the number of page-faults tends to decrease with the number of processing elements,
suggesting scalability.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Number of Processing Elements

Memory
(Mbytes)

MEIKO-
CS2

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

Number of Processing Elements

Page-
faults

Volume

Image

Figure 9 – Memory Demand and Page-faults per Processing Element for the Volume Ray-
casting Program

6 Conclusion and Future Work
Many volume visualisation algorithms are inherently parallel. We developed the PVV library
that facilitates the implementation of parallel volume visualisation programs using the DSM
paradigm. The DSM was implemented considering portability issues among different parallel
processing platforms and the natural data coherence of volume visualisation algorithms.

We implemented and evaluated two volume visualisation programs with the PVV library. The
programs were developed with implicit parallelism and preliminarily results showed that in both
cases the parallel performance scales with the number of processing elements. Another
advantage is that the memory requirements in each processing element tend to decrease when
the total number of processing elements increase, suggesting the use of the PVV library for
processing huge volume datasets. Finally, one important conclusion is that the performance is
strongly dependent from tuneable parameters.

Currently we have already versions of the PVV library running in operating systems such as
LINUX, IRIX and DEC-OSF. We are implementing other volume visualisation algorithms such
the shear-warp and region growing based 3D image processing tools to perform further detailed
performance evaluation of the proposed system.

7 Acknowledgements
The authors would like to thanks Andrew Grant, from the University of Manchester, for their
fruitful observations during the specification of the PVV library; Marcus Luchesse, from São
Paulo University, for its performance measurements on the MEIKO-CS2; Fábio José Ayres,
from São Paulo University, for his Ray-casting implementation in the PVV library; and Jecel
Mattos Asumpção for the revision of this paper. Finally we would like to thanks Mr. Terry

Hewitt, director of the Manchester Visualisation Centre, and Prof. João Antonio Zuffo, Director
of the Laboratório de Sistemas Integráveis, for their support on the developing of this project.

8 References

[1] J. Protic, M. Tomasevic, and V. Milutinovic. “Distributed Shared Memory: Concepts
and Systems”, IEEE Parallel and Distributed Technology, summer 1996, pp. 63-79.

[2] A. Kaufman. “Volume Visualisation”, IEEE Computer Society Press Tutorial, A.
Kaufman (Ed.), Los Alamitos CA, 1990.

[3] B. Corrie and P. Mackerras. “Parallel Volume Rendering and Data Coherence”.
Proceedings of The 1993 IEEE Parallel Rendering Symposium, IEEE Computer Society Press,
1993, pp. 23-26.

[4] T. Elvins, “A Survey of Algorithms for Volume Visualisation”. Computer Graphics (26)
3, 192-201, 1992.

[5] P. Lacroute, “Real Time Volume Rendering on Shared Memory Multiprocessors Using
The Shear Warp Factorization”, IEEE 1995 Parallel Rendering Symposium, p.15-22, IEEE
Computer Society Press 1995.

[6] C. Montani, R. Perego, R. Scopigno . "Parallel Volume Visualisation on a Hypercube
Architecture". Proceedings of the 1992 Workshop on Volume Visualisation, Boston 1992.

[7] U. Neumann, "Parallel Volume Rendering Algorithm Performance on Mesh-Connected
Multicomputers", Proceedings of IEEE Parallel Rendering Symposium, 23-26, IEEE Computer
Society Press 1993

[8] J. Nieh, M. Levoy, "Volume Rendering on Scalable Shared Memory MIMD
Computers", proceedings of the 1992 Workshop on Volume Visualisation, Boston 1992.

