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Scaling Functions

 Continuous time box function: ¢(t)

A(0) A1) = H20) + H2t-1)

1

Scaling (compressing) 0 Scaling + Shifting

1 t
#(21) #2t-1)

0 12 t 0 12 t
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Scaling Scaling + Shifting
A1) #t-1)
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AV o) = 4(2%t) + (22-1)
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For this function

#21t) = #(1) + (1)
HE) = H2t) + H2t-1)
H2) = #22t) + H22t-1)

We can generalize :
#(27't) = ZZ h(k)p(t—k)

For the box function

#(1) =22 h(K)4(2t=K)  h(o)=h(1)= 112

P2 t)= Zi h(k)@(2°t —k)

#(t) is called a scaling function

o(t) = 2i h(k)#(2t —k)| Refinement equation

* This equation couples the representations of a continuous time
function at two time scales.

» The continuous time function is determined by a discrete time
filter

H(z) = h(0) +h(1) z*+ ... + h(N) zN
* For the example :

h(0) = h(1) =% (lowpass filter)




« Solutions to the refinement equation may not always exist.
If it does.

* #(t) hasacompact supporti.e.
#t) =0 if t<0 or t>N (~ithas compact support)

(comes from the FIR filter, h(N) )
* t) often has no closed form solution

o 1) isunlikely to be smooth

» Constraint on h(k): I¢(t)dt = ZZN: h(k) I¢(2t —k)dt =

= 22 h(k) ;jqﬁ(t) dt

then

k;h(k) =1 (assuming [¢(t)dt=0 )

(1) = ZZ h(k)¢(2t k)

Wavelet de Haar
1 )

172 1

. A20) - H2t-1)

12 1

172

y (1) = p(2t) — p(2t 1)




» More generally:

N
w(t)=2> g(k)p(2t—k) Wavelet equation
k=0

» The wavelet is determined by a discrete time filter

G(z) = 9(0) +g(1) z* + ... + g(N) z™
For the Haar wavelet example:

9(0)=1/2, g(1) =-1/2

Frequency response for filters H(z) y G(z2)

H(z): lowpass filter

G(2): highpass filter

Haar: 09
o j [H(e)|
H@z) =% +%z! N

G(@2)=% -Y%17t o
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Orthogonality of Scaling Functions

1. Orthogonality under integer shifts

A1) At-1)

0 1 t 0 1 t

1 if k=0
0 otherwise

f¢(t)¢(t ~k)dt=5(k) = {

Orthogonality of Wavelet Functions

1. Wavelet are orthogonal under integer shifts

1 1) 1| wtl)

1/2 1

[y®w-Kdt=5()




Orthogonality of Scaling and Wavelet

2. Scaling function is orthogonal to wavelet

t
L AR

1

0 1 t 1/2

[ow®dt=0

Positive and negative areas cancel each other

Orthogonality of Wavelet across Scales

3. Wavelet are orthogonal across scales

W(2t-1)

1 w(t) 1h w(2t) ]
1/2 % 1

12 1 ‘D 1 | 1/2D

[yw(ydi=0, [y (t-1dt=0




Bases

* Our goal is to use the wavelet function y(t), its scaled
versions , y(st), and their shifts, y(st-k), as building blocks
for continuous time functions.

e We move with functions where a measurement has been
introduced through a scale product:

f(t).g(t)z<f(t),g(t)>zji f(t) g(t)dt <o

* Such functions must have finite energy, and they are said to
belong to the Hilbert space, L? (R).

FO)- fQ = fOf = f@)dt <o

Families of Orthonormal Scaling Functions

For every given scale s1=2i, jinteger, we have
a family of orthonormal functions

4. 0f = [27g@'t-K)}  —eosj<w
Norrhé/l/ization factor so that H¢,-,k(t)H =1

0 ;10 ik (®

2il2

2i t 2i 27k




Relationship between f(t) € L2(R) and ¢,,(t)

tlog(t + 1)

4(t-3)

$(t-2)

~
i
4(t-1)

#(t)

o—

. . . . . . .
0 0.5 1 1.5 2 2.5 3 3.5 4
t

Every ¢,,(t) contributes with the mean value of f{¢) in the
interval (k-1, k)

The family {#(t-k)},_, generates a subspace V, of step
functions in the intervals t e [k, k+1) :

f(t

1| 1 2

If f(t) € L2(R) and f(t) €V, then

FO = < oy >ty

{#(t-k)}, ., is an orthonormal bases of V,

20




Relationship between f(t) € L2(R) and ¢, ,(t)

tlog(t + 1)

o = N W »~» 00 O N
T T T T T T

o 05 1 15 2 25 3 35 4
t
As the scale factor increases, the details increase

The family {#, ()}, generates a subspace V, of step
functions in the intervals te 2-1 [k, k+1) :

f(t

172 1 1

If f(t) € L2(R) and f(t) €V, then

f)= <f.h,>d

{41} ¢z is an orthonormal bases of V, oV,




Relationship between f(t) € L*(R) and ¢;,(t)

t log(t + 1)

{20V }

— {o}
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Subspace V; of step functions in the intervals te 27 [k, k+1) :

{4,«(®} «z is an orthonormal bases of V; o V;; ... oV,

But

{4k} ], keZ isnotan orthonormal basis of L2 (R )
However

{vx(} J, keZ is an orthonormal basis of L (R )




Family of Orthonormal Wavelet Functions

Consider all scales s'=2J, jinteger, and integer shifts k
of the Haar wavelet

i) =2"p(2't-k), —o<j<o, —o<k<o
Normalization factor so that ”l//,-,k(t)H =1

_J1 ifj=landk=m
Jriwin)= {O otherwise
=6(j-1o(k—m)

{vx(®} J, keZ is an orthonormal basis of L% (R )

f(t)= z bj,k‘//j,k(t)

j.kez
b= O w0 dt
vi(t) = 21"y (2t - k)

We need a two times infinity number of coeficients




Family of Orthonormal Wavelet Functions

Zr0l,

72N

Example of Similarity with Images

28

Every cell is an element of the basis

) . )
) . )




Multiresolution Analysis

In order to make a multiresolution analysis we need a

sequence of embedded subspaces that verify:

1. Inclusion:
L*(R)>...oV,,; DV, 5.V, oV, >V, 5..5{0}

2. Completeness: lim, .V, =J:Q V, =L*(R)

3. Emptiness: nv, ={o}

29

4. Shift: If f(t)eV, then f(t—2'k)eV,

5. Scale: If f(t)eV, entonces f(2t)eV,,

6. Basis of V;: There exists ¢(t) such that{@(t-k)},.,
is a basis of V,

A sequence of closed subspaces {V,},_, verifying

1- 6 are called a multiresolution aproximation of L2(R)

30




Vi, ©V,; : How, do we fill the gap between them?

Define a sequence of complementary subspaces
W; such that:

Vi =V + W,
and they do not overlap

V,nW,; = {0}

That is verified by Haar {v;, ()} vz and {¢; (1)} vz

Define W, as the subspace generated by the orthonormal
set

W, : {ijk(t) = 2“21,//(2Jt—k)}k€

z

Where:
‘/’j,k(t)zzj/Z‘//(th—k), —0< j<oo, —w<k<wo

is an orthonormal basis of L2(R). Then

{‘//jsJ,k (t)}(j,k)ez :{‘//1<J,k(t)}(j,k)ez o {‘//J,k ()
Therefore: V, LW,

and V), =V, ®W,

32




We then have: v =v, ®w,
V, =V, ®W, =V, ®W, DW,

2 0
mew@zw
j=

Moreover V, =V, ®W,,
=V, ®W, ®W
-1
= Z Wj
j=—
then:

L*(R) =V, ®ZW1 = Z W,

=0 =0

33




Relationship between subspaces

We have

V, has a shift invariant basis {#(t-k)},..,

W, has a shift invariant basis { y(t-k) },.»
Since V; =V, + W, we expect that V; will have twice
as many basis functions as V, alone.
Two possibilities:

LAKtK), UtK}z

2. Use the scaling law

If #(t-k)} € V, then ¢2t-k)} € V,

2. Use the scaling law: ¢(t-k)} € V,, #2t-k)} € V;

So V, has a shift-invariant basis: {2-V2¢(2t-k)} , .,

Since V, — V, any function in V, can be written as a

linear combination of the basic functions for V,

Then:

o(t) = 2i h(k)#(2t —k) | Refinement equation




We also know:
Wy =V =V,
So W, < V; any function in W, can be written as a

linear combination of the basic functions for V,

Then:

N
w(t) =2 g(k)g(2t—k) Wavelet equation
k=0

Multiresolution Representations

L*(R) =V, ®W, ©W, ®W, ®W, D ...

Finite energy system | . Level1details
. Level O details

Coarse approximation
generated by the scaling function




Vo =VJ _WJ—l _WJ—l e _Wo

tlog(t + 1)

tlog(t + 1) tlog(t + 1)

Vo Vi Vo Vg




Fourier Transform versus
Wavelet Transform

Sao Paulo, October 2010

Fourier Analysis

» Breaks down a signal into constituent sinusoids of different
frequencies

= NN R——

sin(t) -0.25sin(5t) 0.3 sin(7t)

» Transform our view of the
signal from from time-based
to frequency-based.

amplitud




* In transforming to the frequency domain, time
information is lost:

When did a determined event took place?

 Ifitis a stationary signal this drawback isn't very
important.

 Fourier analysis is not suited to detecting
nonstationary or transitory characteristics:
— drift,
— trends,

— abrupt changes: breakdown points, discontinuities in
higher derivatives

— beginnings and ends of events
— self similarities.

Why Wavelets?

— Wavelet analysis allows the use of long time
intervals where we want more precise low-
frequency information, and shorter regions where
we want high-frequency information (all in the
same signal)

— Ability to perform local analysis : to analyze a
localized area of a larger signal.

— Compress or de-noise a signal without appreciable
degradation.




What is a Wavelet?

+ A wavelet is a waveform
of effectively limited
duration that has an

average value of zero.

e Sinusoids : unlimited
duration, smooth and

predictable.

* Wavelets: limited
duration, irregular and

asymetric.

Continuos Wavelet Transform

 Fourier transform: breaks down a signal in sum of sinusoids of
different frequencies — Fourier Coefficients

Fw) = fe™dt

f(t)zziij(W)ejW*dw = ey
72' —00

» Wavelet: breaks down a signal in sum of scaled and shifted
versions of the wavelet function — Wavelet Coefficients

C(scale, position) =f f (t) w(scale, position) dt
f(t) =”C(scale, position) i * (scale, position) de dp

C: measurement of similarity between the signal and the wavelet




L\ =yt
Al

AN

Scaling

s=1/a

a=2
"WWV" WMW (0= w2

A low scale compresses the signal = Fast changing = High frequencies

a=1/2

_W- va 0= W12)

A high scale stretches the signal = Slow changing = Low frequencies

fi(1) = 1,(0.5) = ;(2)

Shifting

(0= W)
L_, ‘ 0= ()
/\\/\ N A /\ (\ N

Vw L ——————————— d\/y\/

fO= p)
L\ f)= w(t+d)
(1S

<=

/\
v

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

A LN

Si d=5, ,(0)= f,(5) = f,(-5)




Shifting w(t-d)

_ 1 [t
Scaling ﬁw[gj
Scaling and Shifting is‘/’[%]

)= f(t)\%t//(t_sd) dt

1.8]
1

0.5

W

£ o B i 1& 2

wavelet db3(t): centered wavelet db3(t): centered
wavelet db3(t + 8): left wavelet db3(2t+7): left
wavelet db3(t - 8): right wavelet db3(t/2 -7): right

Wavelet Properties

« Mother Wavelet: 20

.+ Scaling and Shifting: a0 =v [0
caling and Shifting: sa="2v| =

« Null mean value: jy/(t)dtzo

« Admissibility condition: j‘P(V\;v)z du< = [¥OF =0

(wave of limited wide)

* Regularity condition:

p —
(concentrated in time) [ty®dtio, p=01..N




Steps to Compute the Coefficients

y

1 signal

5

2corr. B W B
3 shifting 3 3 shifting
- 3 shift - -
C=0.0324 €=0.0057 C=0.1070

1. Take a wavelet and compare it to a section at the start of the
original signal

2. Calculate a number, C, that represents how closely correlated
the wavelet is with this section of the signal

3. Shift the wavelet to the right and repeat steps 1 and 2 until
you've covered the whole signal.

Steps to Compute the Coefficients

4 scaling

| shifting shifting 3 3
—_— _— . |
/ €=0.1070

4. Scale (stretch) the wavelet and repeat steps 1 through 3

5. Repeat steps 1 through 4 for all scales




Discrete Wavelet Transform

» Scale and displacement are continuous variables
* We choose only a finite subset of scales and displacement

* Discrete wavelet transform:
— Displacements and scales in powers of 2:
s1=2, d=k2 = ks, jandkintegers

V/j,k(t):\/ZTW

C(s.d)=C(j.k) =3 (M2 "2y (2 'n—k)

n=-o0

1 [t—zkai j =272y (277t-k)

Levels and Resolution

e Scale s and level j arerelated by: s=2i

¢ Resolution: 1/s

* The smaller is the resolution (larger scale) the higher is the
level of detail than can be accessed.

i 0 9 .. 2 1 0o -1 -2

Scale 1024 512 ... 4 2 1 172 14

Resolution 1/210 1/2° ... 1/4 1/2 1 2 4




Analyzed signal.

Discrete Transform, absolute coefficients.

1DEI 2EID SCC 4CC 5CC

absolute

| n.m ! nw

Fourier Transform of the Wavelet signal

Wavelets have a bandpass structure:

I|‘P(W)|

dw< o, = [¥(0) =0
W

L\ y(t) F{p(t)} ' ¥(w)
Al —

t ' ’




Effect of the Scaling in the FT

v ¥4

y(t) F{ut ¥(w)
A /\1/\ N % I [\
v % | t l W, w
“20) ] 219 (w/2)
/\vﬂ N |
| t ‘ 2w, w
A ut/2) [ 2¥(2w)
S~ |
v ‘ w2 w

The wavelet compressed by a factor of 2 extends the frequency of the
wavelet spectrum by the same factor and moves the frequencies that factor

 Given asignal we can cover its full spectrum with
the spectrum of scaled wavelets in the same way
that we can cover the signal in the time domain
with the displacement of wavelets.

 If we see a wavelet as a bandpass filter, a series of
scaled wavelets can be seen as a bank of bandpass

/TX\UX v, \

» We can see the wavelet transform of a signal as the
signal passing trough a bank of filters: Filter Banks




Wavelet de Haar

1 si 0<t<1/2
wt)=9-1 sil/2<t<l
0 en otro caso

Fourier Transform

_ (1—2e_j2 +ejWJ
YW=,

Haiisdell}2 ool | Ty Ho masdelt. 1} Baif1-2 w112 i whranp withe)

% Haar Wavelet
syms w t
wv=sym("Heaviside(t) ")-2*sym("Heaviside(t-1/2)")..
+sym("Heaviside(t-1)");
figure(l),ezplot(wv,[0,1.5])

% Its Fourier Transform
wWv=Fourier(wv); Wv=simplify(WVv)
figure(2),ezplot(abs(W), [-20*pi,20*pi])




Scale Function

» Everytime we stretch the wavelet by a factor of 2, the
bandwidth is halved: reduces by one half: an infinite
number of Spectra is needed to reach the zero frequency.

* We make no attempt to cover the entire spectrum, but we
use a low pass filter covering the hole, when this is
sufficiently small: the spectrum correspond to the
denominated scale function.

Spectrum of the scale function ¢

— aoooziit
. f‘e=n+3}“ e=n+2 A e=n+1 >< e=n
\“ | "’“ | : | |
T
1 1
8 2

Wy

Scale Function for the Haar Wavelet

Huireside(l) Heaiside(l-1)

1 4 o9 |
oa |
o8 [
o7 | |
i | 06 |
F kT

04 |
03

(F) i [

(i} 02 04 DB 0B 1 12 14 16 18 2 %ﬂ &0 i 20 (1] 20 &0 21}
t

%Haar Scale Function

syms w t

wv=sym("Heaviside(t) ")-sym("Heaviside(t-1)");
figure(l),ezplot(wv,[0,2])

% Transformada de Fourier

Wv=fourier(wv); WvV=simplify(WV)
figure(2),ezplot(abs(WV),[-20*pi,20*pi])




Solution of the Refinament Equation

(1) = 22_: h(k)#(2t k)

J.j; ¢(t)e—iwtdt = Zi h(k)J'jO $(2t — k)e—jwtdt

N

Z (k) I ¢(T)e JW(T+k)/2dT

k=0

=

Zh(k)e ]WkIZJ‘ ¢(T)e er/Zdz_

then dW)=HE) @) =HE) HE) o)

= (H H (;“Y)J ®(0)
j=1
If the scale function area is normalized to one :

®(0)= [ g(t)dt =1

T w Ralationship between
d(w) = H(=
W) H Gr) Filter and Scale Function




Interesting Properties for H(w)

*HO)=1,s0 ®0)=1

* In order the scale function have finite energy

[ 1) dw <o

it must be fullfilled: H(w) —> 0

W—7

Solution of the Wavelet Equation

()= ZZ g(k)g(2t-k)

proceeding in a similar way:

Y(w) =G(3) @(3)

- G(V;)[f[ H (;)jcb(O)




Band Coding

«  We break down the spectrum of the signal in two : a Low Pass (LP)
and a High Pass (HP)

— The HP contains the details, low scale, and the LP contains the
approximations, high scale.

e The LP breaks down again in two: LP and HP
* The process continuous until obtaining the desired number of bands

/\ w
/\ v
f
Y\ W
v <-B-> -----2-B-----> 4»»------4-5 --------- >
A W
Scale Wavelet

With scales in powers of 2:
s=2j, d=k2j = ks

. 1 t—k2! , ,
The scale funtion becomes: ¢, (t) = (p[ j—Z”Z(p(ZJt—k)

22
Hierarchical organization Poo | b
similar to the decomposition e
212, t\r ‘h‘ 2u2y,

2970 /\" \A{” 2y,

Fhita®) =

2323, M \/\/“ 22y 454




Conclusion
Applying a Wavelet Transform is equivalent to
passing the signal through a bandpass Filter Bank

The Wavelet defines the details: that is, it gives the
bandpass filters with a bandwidth that is reduced
by half in each step.

The scale function defines the approximations.

If the transformation is performed in this way is not
necessary to specify the wavelet explicitly.

Example of Wavelets and their
Associated Scale Functions

Haar Daubechies
Haar scaling function Haar wavelet function dbé scaling function db& wavelet function
1 1 1
0.5 [+}3]
o0 o0
-0.5 -05
| I— -1 -1
05 1 o 5 10 o 5 10
Coiflets Symlets
ooif2 sealing function coif2 waw £ymE scaling funclion . .
1

B warvelat funclion symé& wavelet function
o . 15 15
1 1 1 1
05 05 05 05
o [ ] o
-05 -05 05 -05
-1 - -1k -1 -1
1 5 10 o 5 [ 0 5 T [ 5 10




Meyer

Meyer scalingfundion  Weysr wavelet functicn
1 1
05 05
0 [
-08 -05

Morlet

Morkt wavelel iunclion

08

0.5

Mexican Hat

Mexican hat waveet unction

08
0.6
04
0.2

[
0.2

-5

o 5

Subsampling

» Every time that the signal is broken down into two
parts, the number of samples of each part is half of
the original signal. The result are the coefficients of

the discrete wavelets

o]

— ¥
S | 1000 samples
N

CA

500 samples
DWT Coefficients

500 samples
DWT Coefficients

Downsampling: of every two samples one is eliminated




Example 1

t=linspace(0,pi,1000);
s=sin(20*t)+0.5*rand(1,1000);
[cA,cD]=dwt(s, "db2");
subplot(3,1,1),plot(s),ylabel("s")
subplot(3,1,2),plot(cA),ylabel ("cA")
subplot(3,1,3),plot(cD),ylabel("cD")

2
. 1
s LAY
B 0 100 200 300 400 500 600 700 800 900 1000
)
components ’
720 100 200 300 400 500 600
0.5
components
-050 100 200 300 400 500 600

Decomposition Tree

o 00 S ) o
o R T IR
2
'
o
'
(3 E) 0 w20 2 00
02
5 o
a2
o 50 00 W w0 om0 %0

File Ejem1DWT .m




Reconstruction or Synthesis

* Inverse Discrete Wavelet Transform (IDWT)

s =3 Y Cli.ky,. 0

j=—oc k=—c0

H H?
/(%)
1000 samples
N N
L 500 coefficients: I L

Upsampling: lengthening a signal component by inserting
zeros between samples.

1000 samples

500 zeros

cA

500 coef.
L
S
H
cD
500 coef.
1000 samples
0 D;
500 zeros

L S =A+D,= A,+D,+D,= A;+D,+D,+D,




2-Dimensional Transform

For image processing: v (X,y)

Shifting and Scaling
_ 1 x-d, y-d,
‘//sl,sz,dl,dz (Xv y) \/g V/( Sl ' Sz )

Scale values in powersof 2: s=2i, d=k2 = ks

Two-dimensional wavelet is defined as the tensor product of 1-
dimensiona wavelets:
Scale Function: o(xy) = o(x) o(y)
Wavelets: v1(Xy) = o(x) v (¥),
yo(%y) = w(X) (y),
Y3(X.y) = w(x) v (y)

v(x) v () v(x) ¢ (y)

234557 4

; o(x) v (y) o(X) o (y)

FoaE T z

Two-Dimensional Coiflet Wavelet




Applications

Detecting Discontinuities
Detecting Trends

Detecting Self-Similarity
Identifying Pure Frequencies
Suppressing Signals
De-Noising Signals
Compressing Signals

Detecting Discontinuities

Ecwpwt noat leval 5 2 = a5+ d5 & ol +dd + 42+ oH

Dos sinusoides de _ 027‘-' |"'|1|'|"1|'f|"|||| I|||
distintas frecuencias a5t N L JII |E1
Wavelet: db5 a5 /\ / \ /\/_\MA_,_{
Nivel: 5 1
D2F
d5 o
D2
F 7
da o I
od4f
F
d3 of
ozl
D4
0.2
o1
d2 .
01
par
di 5[
aal




Detectlng Discontinuities

Dos exponenciales
conectadas
ent=500

Wavelet: db4
Nivel: 2

5

a2

d2

Dacnrro;arlnn ait Iwal B:8= az + da +di
T

11 F

1k J—

(=1

id

(=1

L @ = m
T —T

400 azn 440 460 4EB0 B Lzl H40 L 1] =20 =00

Rampa oscurecida

por ruido coloreado *

Wavelet: db3
Nivel: 6

&

coes = Socoo =
Rean- Mesm—hk
T T T

o
B

a
=1

Detecting Trends

3
=
1
L
1
1

Sighal and appremationis)

i el i

=
@ ¢ -
T




Detecting Self-Similarity

Anahzed Signal

Fractal

Wavelet: coif3
Nivel: 2:2:128 o

L
2400 =h00 200 ETO g apn 4000

Abeplute Walies ol Ca,b Coefisiznksfor 2 = [2:0:4128]

I

Il

3.1 G 3dan 3‘-5 ﬂ aa 3?0 k11T 09&(-

I

Scale T aedors from BN to AR

Detecting Frequencies

Tres sinusoides de
Frecuencias:
0.005, 0.05, 0.5
(A5, D4, D1)

Wavelet: db3
Nivel: 5

“ \‘\U \W\”‘" ‘h W”\ f”| '“L“"\UI‘W'"""M M (”\ ”| |‘|‘ M \”‘ / ,ﬁ I /”M
1 WJ W W W ? Mﬁ M\ W*‘W el MH V\*‘ \f ? f“f'/“ﬁ\
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Suppressing Signals

¥ 107 Signal and Detail[s)
Polinomio de 2° orden con ruido.

— =

En los detalles se ha eliminado
completamente la sefial polinémica
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Wavelet: db3 gl
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De Noising Signals

Desplazamiento Doppler de una sinusoide con adicion de ruido
Wavelet: sym4, Nivel: 5

Signal and Approximation(s) Coefs, Signal and Detail(s)
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Compressing Images
Usada en la compresion de imagenes para almacenamiento de informacion.
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Summary

The wavelets allow you to perform stationary analysis of signals,
as the Fourier transform does, but also analysis of localized areas
of a signal, allowing study characteristics such as shifts, trends,
abrupt changes and start and end events.

Wavelet Transform can be interpreted as a Filter Banks, so its
explicit specification is not required.

Twp-dimensional Wavelet Transform can be used for image
processing.




Bibliography
Bogges, A., F.J. Narcowich (2001), “A First Course in Wavelets with
Fourier Analysis”, Prentice Hall.

Daubechies, 1. (1992), “Ten lectures on wavelets", SIAM.

Strang, G., T. Nguyen (1996), "Wavelets and filter banks",Wellesley-
Cambridge Press.

Mallat, S. (2001), “A wavelet tour of signal processing”. 2° Edition,
Academic Press.

http://www.wavelet.org/

Wavelet Toolbox for use with MATLAB.




