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Scaling Functions

• Continuous time box function: (t)
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Scaling (compressing) Scaling + Shifting

(t) = (2t) + (2t-1)(t) = (2t) + (2t-1)



0 1

1

t

(2-1t)

Scaling Scaling + Shifting

2

0 1

1

t

(t)

0 1

1

t

(t-1)

2

(2-1t) = (t) + (t-1)(2-1t) = (t) + (t-1)

0

1

t

(2t)

Scaling Scaling + Shifting

1/2

0 1/2

1

t

(22t)

(2t) = (22t) + (22t-1)(2t) = (22t) + (22t-1)

0 1/2

1

t

(22t-1)



For this function

(t) = (2t) + (2t-1)

(2-1t) = (t) + (t-1)

We can generalize :
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(2t) = (22t) + (22t-1)
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For the box function
h(0)=h(1)= 1/2 

(t)  is called a scaling function 
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  Refinement equation

• This equation couples the representations of a continuous time

function at two time scales.

• The continuous time function is determined by a discrete time

filter

H(z) = h(0) +h(1) z-1 + … + h(N) z-N

• For the example :

h(0) = h(1) = ½ (lowpass filter)
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• Solutions to the refinement equation may not always exist. 

If it does.

• (t)  has a compact  support i.e.

(t) =0  if t <0   or t  N   ( ~ it has compact support)

(comes from the FIR filter, h(N) )

• (t)  often has no closed form solution 

• (t)  is unlikely to be smooth

• Constraint on h(k):

then

0

( ) 1
N

k

h k


 (assuming ) ( ) 0t dt 

0

1

2
0

( ) 2 ( ) (2 )

2 ( ) ( )

N

k

N

k

t dt h k t k dt

h k t dt

 







  



 

 

Wavelet de Haar
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• More generally:
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  Wavelet equation

g(0) = 1/2,   g(1) = -1/2

• The wavelet is determined by a discrete time filter

G(z) = g(0) +g(1) z-1 + … + g(N) z-N

For the Haar wavelet example:

Frequency response for filters  H(z) y G(z)

H(z): lowpass filter

G(z): highpass filter

Haar:

H(z) = ½ + ½ z-1

G(z) = ½ - ½ z-1

|G(ejw)| |H(ejw)|



Orthogonality of Scaling Functions
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1.  Orthogonality under integer shifts

Orthogonality of Wavelet Functions

( ) ( ) ( )t t k dt k   

1.  Wavelet are orthogonal under integer shifts
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Orthogonality of Scaling and Wavelet

( ) ( ) 0t t dt  

2.  Scaling function is orthogonal to wavelet 
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Positive and negative areas cancel each other

Orthogonality of Wavelet across Scales

( ) (2 ) 0, ( ) (2 1) 0t t dt t t dt      

3.  Wavelet are orthogonal across scales
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Bases

( ). ( ) ( ), ( ) ( ) ( )



   f t g t f t g t f t g t dt

• Our goal is to use the wavelet function (t) , its scaled
versions ,(st), and their shifts, (stk), as building blocks 
for continuous time functions. 

•We move with functions where a measurement has been 
introduced  through a scale product:

• Such functions must have finite energy, and they are said to
belong to the Hilbert space, L2 ( R ). 

2 2( ). ( ) ( ) ( )f t f t f t f t dt



   

Families of Orthonormal Scaling Functions

For every given scale s-1 = 2j,  j integer,  we have  
a family of orthonormal functions
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Relationship between f(t)  L2 ( R ) and 0,k(t)
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Every 0,k(t) contributes with  the mean value of f(t) in the 
interval (k1, k)

20

The family   {(t-k)}kZ generates a subspace V0 of step 
functions  in the intervals t [k, k+1) :

If  f(t)  L2(R) and  f(t)  V0 then

f(t)

1 2-1

{(t-k)}kZ is an orthonormal bases of V0

0, 0,( ) , k k
k

f t f  




  



Relationship between f(t)  L2 ( R ) and 1,k(t)
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f(t)

As the scale factor increases, the details increase

The family   {1,k(t)}kZ generates a subspace V1 of step 
functions  in the intervals t 2-1 [k, k+1) :

If  f(t)  L2(R) and  f(t)  V1 then

f(t)

1/2 1-1/2

{1,k(t)} kZ is an orthonormal bases of V1   V0

1, 1,( ) , k k
k

f t f  




  



Relationship between f(t)  L2 ( R ) and j,k(t)
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Subspace Vj of step functions  in the intervals t 2-j [k, k+1) :

{j,k(t)} kZ is an orthonormal bases of Vj  Vj-1 …  V0

{j,k(t)}  j, kZ is not an orthonormal basis of L2 ( R ) 

But 

However

{j,k(t)}  j, kZ is an orthonormal basis of L2 ( R ) 



Family of Orthonormal Wavelet Functions

Consider all scales  s-1= 2j,  j integer,  and integer shifts k
of the Haar wavelet
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{j,k(t)}  j, kZ is an orthonormal basis of L2 ( R ) 
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We need a two times infinity number of coeficients
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{ 0,k (t)} ….
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{ -1,k (t)}….
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Family of Orthonormal Wavelet Functions
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Every cell is an element of the basis

V0 V-1

V1 V-2

Example of Similarity with Images
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In order to make a multiresolution analysis we need a 

sequence of embedded subspaces that verify:

 2
1 1 0 1( ) .... ... ... 0J JR V V V V V        L

2lim ( )J J J
J

V V R





  L

1.  Inclusión: 

2. Completeness:

Multiresolution Analysis

3. Emptiness:  0J
J

V
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4.  Shift: If  ( )   then  ( 2 )j
J Jf t V f t k V  

5.  Scale: 1If   ( )   entonces  (2 )J Jf t V f t V  

A sequence of closed subspaces {VJ}JZ verifying

1- 6  are called a multiresolution aproximation of L2(R)

6. Basis of V0:    There exists (t)  such that{(t-k)}kZ

is a basis of V0



VJ+1   VJ : How, do we fill the gap between them?

Define a sequence of complementary subspaces

Wj such that:

VJ+1  = VJ + WJ

and they do not overlap

VJ  WJ =  {0}

That is verified by  Haar {j,k(t)} kZ and {j,k(t)} kZ
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Define WJ as the subspace generated by the orthonormal
set

J JV WTherefore:
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is an orthonormal basis of L2(R). Then
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Moreover

then:
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We then have:
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VJ

L2(R)

VJ+1

WJ

WJ

VJ+1

VJ

=



L2(R)

WJ

WJ+1
…

V0

W0



We have

V0 has a shift invariant basis {(t-k)}kZ

W0 has a shift invariant basis {(t-k)}kZ

Since V1  = V0 + W0 we expect that V1 will have twice

as many basis functions as V0 alone.

Two possibilities:

1. {(t-k), (t-k)}kZ

2. Use the scaling law

If (t-k)}  V0 then (2t-k)}  V1

Relationship between subspaces

2. Use the scaling law: (t-k)}  V0 ,  (2t-k)}  V1

So V1 has a shift-invariant basis: {2-1/2(2t-k)} k Z

Since  V0   V1  any function in V0  can be written as a 

linear combination of the basic functions for V1

Then:
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( ) 2 ( ) (2 )
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k

t h k t k 


  Refinement equation



We also know:

W0 =V1 – V0

So  W0   V1  any function in W0  can be written as a 

linear combination of the basic functions for V1

Then:
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  Wavelet equation

Multiresolution Representations

2
0 0 1 2 3( ) ...R V W W W W     L

Finite energy system

Coarse approximation
generated by the scaling function

Level 0 details

Level 1 details
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Fourier Transform versus 
Wavelet Transform

Fourier Analysis

• Transform our view of the 

signal from from time-based 

to frequency-based.

= + +
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• Breaks down a signal into constituent sinusoids of different 
frequencies



• In transforming to the frequency domain, time 
information is lost: 

When did a determined event took place?

• If it is a stationary signal this drawback isn't very 
important.

• Fourier analysis is not suited to detecting 
nonstationary or  transitory  characteristics:
– drift, 
– trends, 
– abrupt changes: breakdown points, discontinuities in 

higher derivatives
– beginnings and ends of events
– self similarities.

Why Wavelets?  

– Wavelet analysis allows the use of long time 
intervals where we want more precise low-
frequency information, and shorter regions where 
we want high-frequency information (all in the 
same signal)

– Ability to perform local analysis : to analyze a 
localized area of a larger signal.

– Compress or de-noise a signal without appreciable 
degradation.



What is a Wavelet?

• A wavelet is a waveform 
of effectively limited 
duration that has an 
average value of zero.

• Sinusoids : unlimited 
duration, smooth and 
predictable.

• Wavelets: limited 
duration, irregular and 
asymetric. 

Continuos Wavelet Transform
• Fourier transform: breaks down a signal in sum of sinusoids of 

different frequencies  Fourier Coefficients

• Wavelet: breaks down a signal in sum of scaled and shifted 
versions of the wavelet function  Wavelet Coefficients
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C: measurement of similarity between the signal and the wavelet



Scaling
f1(t)= (t)

f2(t)= (2t)

f3(t)= (t/2)

f1(1) =  f2(0.5) =  f3(2) 

A low scale compresses the signal  Fast changing  High frequencies

A high scale stretches the signal  Slow changing  Low frequencies

s = 1/a

a=2

a=1/2

Shifting
f1(t)= (t)

f2(t)= (t-d)

f1(t)= (t)

f3(t)= (t+d)

d

- d

Si  d= 5,   f1(0) =  f2(5) =  f3(-5) 



Shifting

Scaling

Scaling and Shifting
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wavelet db3(t): centered
wavelet db3(t + 8): left
wavelet db3(t - 8): right

wavelet db3(t): centered
wavelet db3(2t+7): left
wavelet db3(t/2 -7): right
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C s d f t dt
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Wavelet Properties

• Mother Wavelet:

• Scaling and Shifting:   

• Null mean value:

• Admissibility condition:
(wave of limited wide)

• Regularity condition:
(concentrated in time)

( )t

,

1
( )s d

t d
t

ss
     

 

( ) 0t dt 
2

2( )
, (0) 0

w
dw

w


    

( ) 0, 0,1, ...,pt t dt p N  �



1 signal

2 corr.

C=0.0324 C=0.0057 C=0.1070

shifting shifting......

3 shift

Steps to Compute the Coefficients

1. Take a wavelet and compare it to a section at the start of the 
original signal

2. Calculate a number, C, that represents how closely correlated 
the wavelet is with this section of the signal

3. Shift the wavelet to the right and repeat steps 1 and 2 until 
you've covered the whole signal.

C=0.0324 C=0.1070

shifting shifting
......

4  scaling

Steps to Compute the Coefficients

4.   Scale (stretch) the wavelet and repeat steps 1 through 3

5.   Repeat steps 1 through 4 for all scales



Discrete Wavelet Transform

• Scale and displacement are continuous variables

• We choose only a finite subset of scales and displacement

• Discrete wavelet transform:

– Displacements and scales in powers of 2: 

s-1 = 2j,    d = k 2j =  k s-1 ,     j and k integers

 / 2
,

1 2
( ) 2 2

22

j
j j

j k jj

t k
t t k    
   

 

/ 2( , ) ( , ) ( )2 (2 )j j

n

C s d C j k f n n k


 



  

Levels and Resolution

• Scale  s and level  j are related by:   s = 2j 

• Resolution :    1/s

• The smaller is the resolution (larger scale) the higher is the 
level of detail than can be accessed.

j 10 9 … 2 1 0 -1 -2

Scale 1024 512 … 4 2 1 1/2 1/4

Resolution 1/210 1/29 … 1/4 1/2 1 2 4
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Fourier Transform of the Wavelet signal
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Wavelets have a bandpass structure:
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Effect of the Scaling in the FT
1

F{ (a )}=
a

w
t

a
   

 

w

(t) (w)F{(t)}

t

The wavelet compressed by a factor of 2 extends the frequency of the 
wavelet spectrum by the same factor and moves the frequencies that factor

wn

(2t)
2-1(w/2)

t w

(t/2) 2(2w)

w

2wn

wn//2

• Given a signal we can cover its full spectrum with 
the spectrum of scaled wavelets in the same way 
that we can cover the signal in the time domain 
with the displacement of wavelets. 

• If we see a wavelet as a bandpass filter, a series of 
scaled wavelets can be seen as a bank of bandpass
filters.

• We can see the wavelet transform of a signal as the  
signal passing trough a bank of filters: Filter Banks

123
….



Wavelet de Haar
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Fourier Transform

% Haar Wavelet
syms w t
wv=sym('Heaviside(t)')-2*sym('Heaviside(t-1/2)')…

+sym('Heaviside(t-1)');
figure(1),ezplot(wv,[0,1.5])

% Its Fourier Transform
WV=fourier(wv); WV=simplify(WV)
figure(2),ezplot(abs(WV),[-20*pi,20*pi])



Scale Function
• Everytime we stretch the wavelet by a factor of 2, the 

bandwidth is halved:  reduces by one half: an infinite 
number of Spectra is needed to reach the zero frequency.

• We make no attempt to cover the entire spectrum, but we 
use a low pass filter covering the hole,  when this is 
sufficiently small: the spectrum correspond to the 
denominated scale function. 

wn
1

2 nw
1

4 nw
1

8 nw

e=ne=n+1e=n+2e=n+3

Spectrum of the wavelet 

Spectrum of the scale function 

…

%Haar Scale Function
syms w t
wv=sym('Heaviside(t)')-sym('Heaviside(t-1)');
figure(1),ezplot(wv,[0,2])
% Transformada de Fourier
WV=fourier(wv); WV=simplify(WV)
figure(2),ezplot(abs(WV),[-20*pi,20*pi])

Scale Function for the Haar Wavelet
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Solution of the Refinament Equation
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then

If the scale function area is normalized to one :
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  Ralationship between
Filter and Scale Function



Interesting Properties for H(w)

• H(0) = 1, so   (0) = 1

• In order the scale function have finite energy

it must be fullfilled:   

2| ( ) |w dw
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Solution of the Wavelet Equation

proceeding in a similar way:
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Band Coding
• We break down the spectrum of the signal in two : a Low Pass (LP) 

and a High Pass (HP)

– The HP contains the details, low scale, and the LP contains the 
approximations, high scale. 

• The LP breaks down again in two: LP and HP

• The process continuous until obtaining the desired number of bands

w

w

w

w

B 2B 4B

LP HP

4B

LP HP

2B

LP HP

B B

S

Scale Wavelet

With scales in powers of 2:
s = 2j,    d = k 2j =  k s

The scale funtion becomes:  / 2
,

1 2
( ) 2 2

22

j
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j k jj

t k
t t k    
   

 

0,0

21/21,0 21/21,0

22,0 22,0

23/23,0 23/2  3,0

Hierarchical organization 
similar to the decomposition



Conclusion

• Applying a Wavelet Transform is equivalent to 
passing the signal through a bandpass Filter  Bank 

• The Wavelet defines the details: that is, it gives the 
bandpass filters with a bandwidth  that is reduced 
by half in each step.

• The scale function defines the approximations.

• If the transformation is performed in this way is not 
necessary to specify the wavelet explicitly. 

Example of Wavelets and their 
Associated Scale Functions

Haar Daubechies

Coiflets Symlets



Meyer Mexican Hat

Morlet

Subsampling
• Every time that the signal is broken down into two 

parts, the number of samples of each part is half of 
the original signal. The result are the coefficients of 
the discrete wavelets

S

2 cD

2 cA

1000 samples

500 samples
DWT Coefficients

500 samples
DWT Coefficients

Downsampling: of every two samples one is eliminated



Example 1
t=linspace(0,pi,1000);

s=sin(20*t)+0.5*rand(1,1000);

[cA,cD]=dwt(s,'db2');

subplot(3,1,1),plot(s),ylabel('s')

subplot(3,1,2),plot(cA),ylabel('cA')

subplot(3,1,3),plot(cD),ylabel('cD')
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Reconstruction or Synthesis

• Inverse Discrete Wavelet Transform (IDWT)

Upsampling: lengthening a signal component by inserting 
zeros between samples.
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2-Dimensional Transform

For image processing:  (x,y)
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Shifting and Scaling

Two-dimensional wavelet is defined as the tensor product of 1-
dimensiona wavelets:
Scale Function:        (x,y)  = (x) (y) 

Wavelets:  1(x,y) = (x)  (y), 
2(x,y) = (x) (y), 
3(x,y) = (x)  (y)

Scale values in powers of 2: s = 2j,    d = k 2j =  k s

(x)  (y) (x)  (y)

(x)  (y) (x)  (y)

Two-Dimensional Coiflet Wavelet



Applications

• Detecting Discontinuities

• Detecting Trends

• Detecting Self-Similarity 

• Identifying Pure Frequencies 

• Suppressing Signals 

• De-Noising Signals 

• Compressing Signals 

Detecting Discontinuities

Wavelet: db5
Nivel: 5

Dos sinusoides de 
distintas frecuencias



Detecting Discontinuities
Dos exponenciales 
conectadas 
en t = 500

Wavelet: db4
Nivel: 2

Detecting Trends
Rampa oscurecida
por ruido coloreado

Wavelet: db3
Nivel: 6



Detecting Self-Similarity 
Fractal

Wavelet: coif3
Nivel: 2:2:128

Detecting Frequencies 
Tres sinusoides de 

Frecuencias:

0.005, 0.05, 0.5

(A5, D4, D1)

Wavelet: db3
Nivel: 5



Suppressing Signals 
Polinomio de 2º orden con ruido.

En los detalles se ha eliminado

completamente la señal polinómica

Wavelet: db3

Nivel: 4

De Noising Signals 
Desplazamiento Doppler de una sinusoide con adición de ruido

Wavelet: sym4,  Nivel: 5



Compressing Images
Usada en la compresión de imágenes para almacenamiento de información.

Summary

The wavelets allow you to perform stationary analysis of signals, 
as the Fourier transform does, but also analysis of localized areas 
of a signal, allowing study characteristics such as shifts, trends, 
abrupt changes and start and end events.

Wavelet Transform can be interpreted as a Filter Banks, so its
explicit specification is not required.

Twp-dimensional Wavelet Transform can be used for image
processing.
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